• Title/Summary/Keyword: NF-${\kappa}{\beta}$

Search Result 433, Processing Time 0.027 seconds

Anti-inflammatory Effect of Perilla frutescens (L.) Britton var. frutescens Extract in LPS-stimulated RAW 264.7 Macrophages

  • Lee, Hyun-Ah;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.2
    • /
    • pp.109-115
    • /
    • 2012
  • This study was designed to investigate the inhibitory effects of Perilla frutescens (L.) Britton var. frutescens extract on the production of inflammation-related mediators (NO, ROS, NF-${\kappa}B$, iNOS and COX-2) and pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, IL-6) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Perilla frutescents (L.) Britton var. frutescens was air-dried and extracted with ethanol. The extract dose-dependently decreased the generation of intracellular reactive oxygen species and dose-dependently increased antioxidant enzyme activities, such as superoxide dismutase, catalase and glutathione peroxidase in lipopolysaccharide stimulated RAW 264.7 macrophages. Also, Perilla frutescens (L.) Britton var. frutescens extract suppressed NO production in lipopolysaccharide-stimulated RAW 264.7 cells. The expressions of pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$ and IL-6), NF-${\kappa}B$, iNOS and COX-2 were inhibited by the treatment with the extract. Thus, this study shows the Perilla frutescens (L.) Britton var. frutescens extract could be useful for inhibition of the inflammatory process.

Anti-inflammatory Activities of GyejigaChulBuTang on Lipopolysaccharide-stimulated RAW264.7 Cells (LPS에 의해 자극된 RAW264.7 세포에 대한 계지가출부탕의 항염증활동)

  • Jeong, Min-Jeong;Lee, Seung-Yeon;Yu, Sun-Ae;Kang, Kyung-Hwa
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.47-58
    • /
    • 2014
  • Objectives GyejigaChulBuTang (GCBT) is a prescription used to treat acute and chronic arthritis in Korea, China, and Japan. This study assessed the anti-inflammatory and anti-oxidant activities of GCBT on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Methods Raw264.7 cells were pretreated with or without GCBT for 1 hour prior to incubation with LPS. Anti-inflammatory activity of GCBT was evaluated with reference to gene expression and production levels of proinflammatory cytokines ($TNF{\alpha}$, IL-$1{\beta}$, IL-6, GM-CSF and $INF{\gamma}$) and inflammatory mediators (iNOS, COX-2, NO and $PGE_2$). In addition, intracellular ROS generation and signal transduction of MAPK family, PI3K/Akt and $I{\kappa}B{\alpha}/NF{\kappa}B$ was investigated. Results Prior treatment with GCBT inhibited elevation of $TNF{\alpha}$, IL-$1{\beta}$, IL-6, GM-CSF, $INF{\gamma}$, NO and $PGE_2$, together with their cognate mRNAs in a dose-dependent manner. Intracellular ROS contents were similarly reduced. These effects were due to inhibition of LPS-induced phosphorylation of MAPK family, PI3K/Akt and $I{\kappa}B{\alpha}$ as well as nuclear translocation of $NF{\kappa}B$. Conclusions GCBT suppresses pro-inflammatory mediators. GCBT has potential in the treatment of juvenile rheumatoid arthritis associated with inflammation.

Effects of Electroacupuncture on the Alteration of Inflammation-related Proteins and Glycoconjugates in the Ankle Joint of Complete Freund's Adjuvant-injected Rats (전침이 Complete Freund's Adjuvant를 주사한 흰쥐의 거퇴관절내 염증관련 단백질 및 복합당질 변화에 미치는 연구)

  • Park, In-Bum;Yoon, Hyun-Min;Jang, Kyung-Jun;Kim, Cheol-Hong;Min, Young-Kwang;Song, Choon-Ho;Ahn, Chang-Beohm
    • Journal of Acupuncture Research
    • /
    • v.25 no.2
    • /
    • pp.105-117
    • /
    • 2008
  • 목적 : 만성 염증성 질환에 대한 전침효과를 알아보기 위해 complete Freund's adjuvant(CFA) 유발 관절염 모델의 거퇴 관절 내 염증관련 단백질 및 복합당질의 변화를 살펴보았다. 방법 : Sprague-Dawley계 흰쥐의 족부에 CFA를 주사한 다음 3일 간격으로 2Hz, 15Hz 및 120Hz 전침자극을 주며 부종 형성여부를 plethysmometer로 측정하여 판정하였으며 30일째 거퇴관절을 취하여 4% paraformaldehyde에 고정하고 EDTA용액에서 탈회시켜 파라핀연속 절편을 얻어 $NF-{\kappa}B$를 비롯한 5종의 염증관련 단백질의 발현 및 복합당질 변화를 살펴보았다. 결과 : 관절연골 내 면역반응 중 연골기질은 반응이 없거나 약하고 연골세포는 $NF-{\kappa}Bp65$, $I-{\kappa}B{\alpha}$, iNOS 반응이 강하며 특히 유리연골층에서 더 현저하였으나 염증 및 전침자극에 따른 변화는 없었다. 관절낭에서 면역반응을 살펴보면 염증유발시 활액세포의 면역반응세포는 $I-{\kappa}B{\alpha}$가 감소한 반면 iNOS, $IL-1{\beta}$는 증가하며 특히 iNOS 증가가 현저하였으며 전침자극에 의해 iNOS 가 감소하였다. 활액막조직에서 모든 면역반응이 증가하며 특히 $NF-{\kappa}Bp65$, $I-{\kappa}B{\alpha}$, iNOS 반응이 현저한데 전침자극에 의해 $IL-1{\beta}$를 제외한 모든 반응이 감소하였다. 복합당질 염색성은 CFA를 주사한 염증유발 흰쥐군이 정상군에 비해 감소하였다. 관절연골 중 구역간질의 중성복합당질 및 연골세포피막의 산성복합당질이 현저히 감소하였다 Lectin반응도 DBA을 제외한 모든 발현이 염증유발시 감소하였다. 그러나 전침처리에 의해 정상군과 유사한 염색성과 lectin반응을 유지하였다. 특히 구역간질의 중성복합당질과 연골세포의 sWGA와 RCA-1 반응이 현저하였다. 결론 : 만성 염증성 동물모델의 거퇴 관절 내 염증관련 단백질은 관절연골보다 관절낭에서, 복합당질의 변화는 관절연골에서 큰 변화를 보였으며 전침의 자극에 의해 이들 변화가 억제되는 것을 알 수 있다. 이상의 결과로 보아 전침처치는 염증관련 단백질 발현 및 복합당질의 변화 억제를 통해 만성 관절염 질환에 효과적임을 알 수 있다.

  • PDF

Long Term Effect of High Glucose and Phosphate Levels on the OPG/RANK/RANKL/TRAIL System in the Progression of Vascular Calcification in rat Aortic Smooth Muscle Cells

  • Kang, Yang Ho;Jin, Jung Sook;Son, Seok Man
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.111-118
    • /
    • 2015
  • Osteoprotegerin (OPG), receptor activator of NF-${\kappa}B$ ligand (RANKL)/receptor activator of NF-${\kappa}B$ (RANK) axis, and TNF-related apoptosis-inducing ligand (TRAIL) participate in vascular calcification process including atherosclerosis, but their contributions under high glucose (HG) and phosphate (HP) condition for a long-term period (more than 2 weeks) have not been fully determined. In this study, we evaluated the effects of HG and HP levels over 2 or 4 weeks on the progression of vascular calcification in rat vascular smooth muscle cells (VSMCs). Calcium deposition in VSMCs was increased in medium containing HG (30 mmol/L D-glucose) with ${\beta}$-glycerophosphate (${\beta}$-GP, 12 mmol/L) after 2 weeks and increased further after 4 weeks. OPG mRNA and protein expressions were unchanged in HG group with or without ${\beta}$-GP after 2 weeks. However, after 4 weeks, OPG mRNA and protein expressions were significantly lower in HG group with ${\beta}$-GP. No significant expression changes were observed in RANKL, RANK, or TRAIL during the experiment. After 4 weeks of treatment in HG group containing ${\beta}$-GP and rhBMP-7, an inhibitor of vascular calcification, OPG expressions were maintained. Furthermore, mRNA expression of alkaline phosphatase (ALP), a marker of vascular mineralization, was lower in the presence of rhBMP-7. These results suggest that low OPG levels after long term HG and phosphate stimulation might reduce the binding of OPG to RANKL and TRAIL, and these changes could increase osteo-inductive VSMC differentiation, especially vascular mineralization reflected by increased ALP activity during vascular calcification.

NF-κB Activation and PPAR Transactivational Effects of a New Aliphatic Acid Amide from Pericarps of Zanthoxylum piperitum

  • Yang, Seo Young;Tai, Bui Huu;Song, Seok Bean;Li, Wei;Yan, Xi Tao;Sun, Ya Nan;Nguyen, Phuong Thao;Kim, Young Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2361-2366
    • /
    • 2014
  • A new aliphatic acid amide, ZP-amide F (1), and eight known compounds, including bungeanumamide A (2), tumuramide C (3), ZP-amide A (4), ZP-amide B (5), ZP-amide D (6), hyperin (7), quercitrin (8), and (-)-sesamin (9), were isolated from pericarps of Zanthoxylum piperitum. The effects of these compounds on $TNF{\alpha}$-induced NF-${\kappa}B$ activation and transactivational activity of PPARs, including $PPAR{\alpha}$, $PPAR{\beta}({\delta})$ and $PPAR{\gamma}$ subtypes, were evaluated. Compounds 7 and 9 exhibited potent inhibitory effects on $TNF{\alpha}$-induced NF-${\kappa}B$ activation with $IC_{50}$ values of 5.50 and $8.10{\mu}M$, respectively. Aliphatic acid amide compounds 3, 4 and 6 displayed enhanced effects on PPAR transactivational activity with $EC_{50}$ values of 47.12, 19.13 and $12.02{\mu}M$, respectively. Among them, compound 4 demonstrated an increase in $PPAR{\alpha}$ transactivational activity, compound 3 showed a moderate increase on all PPAR subtypes, whereas compound 6 displayed weak PPAR transactivational activity.

The Shigella Flexneri Effector OspG Interferes with Innate Immune Responses by Targeting Ubiquitin-Conjugating Enzymes

  • Kim, Dong-Wook
    • Proceedings of the PSK Conference
    • /
    • 2005.11a
    • /
    • pp.231-232
    • /
    • 2005
  • Bacteria of Shigella spp. are responsible for shigellosis in humans, a disease characterized by destruction of the colonic epithelium that is induced by the inflammatory response elicited by invasive bacteria. They use a type III secretion system injecting effector proteins into host cells to induce their entry into epithelial cells and triggers apoptosis in macrophages. We present evidence that the effector OspG is a protein kinase that binds various ubiquitinylated ubiquitin-conjugating enzymes (E2s) and blocks degradation of phospho-$I{\kappa}B{\alpha}$ induced upon entry of bacteria into epithelial cells. Transfection experiments confirmed that OspG interferes with the $NF-{\kappa}B$ activation patway by preventing phospho-$I{\kappa}B{\alpha}$ degradation, suggesting that OspG inactivates a component of the $SCF^{{\beta}-TrCP}$ ubiquitin ligase complex (E3) involved in phospho-$I{\kappa}B{\alpha}$ ubiquitination. Upon infection of ileal loops in rabbits, the ospG mutant induced a stronger inflammatory response compared with the wild-type strain, indicating that OspG down-regulates the host innate response induced by invasive bacteria.

  • PDF

Anti-Inflammatory Effect of the Root extracts from Hibiscus syriacus in LPS-Stimulated RAW264.7 Cells

  • Kim, Ha Na;Park, Su Bin;Park, Gwang Hun;Eo, Hyun Ji;Song, Jeong Ho;Kwon, Hae Yun;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.31 no.3
    • /
    • pp.211-217
    • /
    • 2018
  • Hibiscus syriacus (H. syriacus) as the national flower of Korea has been used as the herbal medicine in Asia. In this study, we evaluated the anti-inflammatory effect of 70% ethanol extracts from the root of Hibiscus syriacus (RHS-E70) and elucidated the potential signaling pathway in LPS-stimulated RAW264.7 cells. RHS-E70 dose-dependently suppressed NO production by inhibiting iNOS and IL-${\beta}$ expression in LPS-stimulated RAW264.7 cells. RHS-E70 inhibited the phosphorylation and degradation of $I{\kappa}B-{\alpha}$, which contributed to the inhibition of p65 nuclear accumulation and NF-${\kappa}B$ activation. Furthermore, RHS-E70 suppressed the phosphorylation of ERK1/2 and p38, which results in the inhibition of ATF2 phosphorylation and subsequent nuclear accumulation. These results indicate that RHS-E70 may exert anti-inflammatory activity by inhibiting NF-${\kappa}B$ and MAPK/ATF2 signaling. From these findings, RHS-E70 has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammatory diseases.

Methyl p-Hydroxycinnamate Suppresses Lipopolysaccharide-Induced Inflammatory Responses through Akt Phosphorylation in RAW264.7 Cells

  • Vo, Van Anh;Lee, Jae-Won;Shin, Seung-Yeon;Kwon, Jae-Hyun;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.10-16
    • /
    • 2014
  • Derivatives of caffeic acid have been reported to possess diverse pharmacological properties such as anti-inflammatory, anti-tumor, and neuroprotective effects. However, the biological activity of methyl p-hydroxycinnamate, an ester derivative of caffeic acid, has not been clearly demonstrated. This study aimed to elucidate the anti-inflammatory mechanism of methyl p-hydroxycinnamate in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Methyl p-hydroxycinnamate significantly inhibited LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$ and the protein expression of iNOS and COX-2. Methyl p-hydroxycinnamate also suppressed LPS-induced overproduction of pro-inflammatory cytokines such as IL-$1{\beta}$ and TNF-${\alpha}$. In addition, methyl p-hydroxycinnamate significantly suppressed LPS-induced degradation of $I{\kappa}B$, which retains NF-${\kappa}B$ in the cytoplasm, consequently inhibiting the transcription of pro-inflammatory genes by NF-${\kappa}B$ in the nucleus. Methyl p-hydroxycinnamate exhibited significantly increased Akt phosphorylation in a concentration-dependent manner. Furthermore, inhibition of Akt signaling pathway with wortmaninn abolished methyl p-hydroxycinnamate-induced Akt phosphorylation. Taken together, the present study clearly demonstrates that methyl p-hydroxycinnamate exhibits anti-inflammatory activity through the activation of Akt signaling pathway in LPS-stimulated RAW264.7 macrophage cells.

Avicularin Inhibits Lipopolysaccharide-Induced Inflammatory Response by Suppressing ERK Phosphorylation in RAW 264.7 Macrophages

  • Vo, Van Anh;Lee, Jae-Won;Chang, Ji-Eun;Kim, Ji-Young;Kim, Nam-Ho;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo;Kwon, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.532-537
    • /
    • 2012
  • Avicularin, quercetin-3-${\alpha}$-L-arabinofuranoside, has been reported to possess diverse pharmacological properties such as anti-inflammatory and anti-infectious effects. However, the underlying mechanism by which avicularin exerts its anti-inflammatory activity has not been clearly demonstrated. This study aimed to elucidate the anti-inflammatory mechanism of avicularin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Avicularin significantly inhibited LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$ and the protein levels of iNOS and COX-2, which are responsible for the production of NO and $PGE_2$, respectively. Avicularin also suppressed LPS-induced overproduction of pro-inflammatory cytokine IL-$1{\beta}$. Furthermore, avicularin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which retains NF-${\kappa}B$ in the cytoplasm, consequently inhibiting the transcription of pro-inflammatory genes by NF-${\kappa}B$ in the nucleus. To understand the underlying signaling mechanism of anti-inflammatory activity of avicularin, involvement of multiple kinases was examined. Avicularin significantly attenuated LPS-induced activation of ERK signaling pathway in a concentration-dependent manner. Taken together, the present study clearly demonstrates that avicularin exhibits anti-inflammatory activity through the suppression of ERK signaling pathway in LPS-stimulated RAW 264.7 macrophage cells.

Anti-inflammatory effect of methanol extract of Keum-Ryung-Ja-San in mouse macrophages (마우스대식세포주인 RAW 264.7에서 금령자산(金鈴子散)(金鈴子散)의 항염증 활성 연구)

  • Kim, Do-Hyung;Yi, Hyo-Seung;Yun, Hyun-Jeong;Cha, Chang-Min;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.25 no.2
    • /
    • pp.89-98
    • /
    • 2010
  • Objective : The aim of this study was to determine whether methanol extract of Keum-Ryung-Ja-San (KRJS) inhibit production of NO, $PGE_2$, iNOS, COX-2 and pro-inflammatory cytokines in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Methods : Cytotoxic activity of extracts on RAW 264.7 cells was measured using 5-(3-caroboxymeth-oxyphenyl)-2H-tetra-zolium inner salt (MTS) assay. The nitric oxide (NO) production was measured by Griess reagent system. And proinflammatory cytokines and PGE2 were measured by ELISA kit. The levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2(COX-2), $I{\kappa}-B-\alpha$ and nuclear NF-${\kappa}B$ p65 expression were detected by western blot. Results : Our results indicated that methanol extract of KRJS significantly inhibited the LPS-induced NO, $PGE_2$ production and iNOS, COX-2 expression accompanied by an attenuation of TNF-$\alpha$, IL-$1{\beta}$ and IL-6 production in RAW 264.7 cells. Moreover, methanol extract of KRJS treatment also blocked LPS-induced NF-${\kappa}B$ activation. Conclusion : These findings indicate that methanol extract of KRJS inhibits the production of pro-inflammatory mediators and cytokines via suppression of NF-${\kappa}B$ activation. Take together, these results indicate that methanol extract of KRJS has the potential for use as an agent of anti-chronic inflammatory diseases.