• Title/Summary/Keyword: NF-$\kappa$B inhibitor

Search Result 252, Processing Time 0.027 seconds

Acrolein with an α,β-unsaturated Carbonyl Group Inhibits LPS-induced Homodimerization of Toll-like Receptor 4

  • Lee, Jeon-Soo;Lee, Joo Young;Lee, Mi Young;Hwang, Daniel H.;Youn, Hyung Sun
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.253-257
    • /
    • 2008
  • Acrolein is a highly electrophilic ${\alpha},{\beta}$-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) activation by lipopolysaccharide (LPS). The mechanism by which it inhibits $NF-{\kappa}B$ is not clear. Toll-like receptors (TLRs) play a key role in sensing microbial components and inducing innate immune responses, and LPS-induced dimerization of TLR4 is required for activation of downstream signaling pathways. Thus, dimerization of TLR4 may be one of the first events involved in activating TLR4-mediated signaling pathways. Stimulation of TLR4 by LPS activates both myeloid differential factor 88 (MyD88)- and TIR domain-containing adapter inducing $IFN{\beta}$ (TRIF)-dependent signaling pathways leading to activation of $NF-{\kappa}B$ and IFN-regulatory factor 3 (IRF3). Acrolein inhibited $NF-{\kappa}B$ and IRF3 activation by LPS, but it did not inhibit $NF-{\kappa}B$ or IRF3 activation by MyD88, inhibitor ${\kappa}B$ kinase $(IKK){\beta}$, TRIF, or TNF-receptor-associated factor family member-associated $NF-{\kappa}B$ activator (TANK)-binding kinase 1 (TBK1). Acrolein inhibited LPS-induced dimerization of TLR4, which resulted in the down-regulation of $NF-{\kappa}B$ and IRF3 activation. These results suggest that activation of TLRs and subsequent immune/inflammatory responses induced by endogenous molecules or chronic infection can be modulated by certain chemicals with a structural motif that enables Michael addition.

Herbal Extracts as a NF-kappaB Inhibitor (NF-kappaB 프로모터 활성을 억제하는 식물추출물)

  • Park, Deok-Hoon;Lee, Jong-Sung;Jung, Eun-Sun;Hyun, Chang-Gu;Lee, Ji-Young;Hur, Sung-Ran;Koh, Jae-Sook;Lee, Hee-Kyung;Baek, Ji-Hwoon;Yoo, Byung-Sam;Moon, Ji-Young;Kim, Ju-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.3 s.58
    • /
    • pp.135-140
    • /
    • 2006
  • Nuclear factor-kappaB (NF-kappaB) is a critical transcription factor for maximal expression of many of the cytokines that are involved in the pathogenesis of inflammatory diseases. In this study, we found that 12 plant extracts among 200 plants, namely, Forsythia koreana, Capsicum annuum L, Mentha arvenis, Duchesnea chrysantha, Morus alba, Saururus Chinenis (Lour) Baill, Pine needle, Zingiber mioga (Thunb.), Roscoe, Houttuynia, Prunus yedoenis, Sasa quelpaertenis, significantly inhibited LPS- induced NF-kappaB activation in a concentration-dependent manner. Additionally, 12 plant extracts were found to have antioxidant activities in DPPH assay Therefore, we have attempted to determine whether 12 herbal extracts could inhibit the expression of cytokines possessing NF-kappaB promoter in their promoter regions. Consistently 12 herbal extracts inhibited LPS-induced production of TNF alpha and interleukin-8 (IL-8). These results show that 12 herbal extracts suppresses the production of pro-inflammatory mediators through the inhibition of the NF-kappaB signaling pathway, we suggest that 12 herbal extracts can be used as a anti-inflammatory and soothing agent.

Identification of a Variant Form of Cellular Inhibitor of Apoptosis Protein (c-IAP2) That Contains a Disrupted Ring Domain

  • Park, Sun-Mi;Kim, Ji-Su;Park, Ji-Hyun;Kang, Seung-Goo;Lee, Tae Ho
    • IMMUNE NETWORK
    • /
    • v.2 no.3
    • /
    • pp.137-141
    • /
    • 2002
  • Among the members of the inhibitor of apoptosis (IAP) protein family, only Livin and survivin have been reported to have variant forms. We have found a variant form of c-IAP2 through the interaction with the X protein of HBV using the yeast two-hybrid system. In contrast to the wild-type c-IAP2, the variant form has two stretches of sequence in the RING domain that are repeated in the C-terminus that would disrupt the RING domain. We demonstrate that the variant form has an inhibitory effect on TNF-mediated $NF-{\kappa}B$ activation unlike the wild-type c-IAP2, which increases TNFmediated $NF-{\kappa}B$ activation. These results suggest that this variant form has different activities from the wild-type and the RING domain may be involved in the regulation of TNF-induced $NF-{\kappa}B$ activation.

Blockade of p38 Mitogen-activated Protein Kinase Pathway Inhibits Interleukin-6 Release and Expression in Primary Neonatal Cardiomyocytes

  • Chae, Han-Jung;Kim, Hyun-Ki;Lee, Wan-Ku;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.6
    • /
    • pp.319-325
    • /
    • 2002
  • The induction of interleukin-6 (IL-6) using combined proinflammatory agents $(LPS/IFN-{\gamma}\;or\;TNF-{\alpha}/IFN-{\gamma})$ was studied in relation to p38 mitogen-activated protein kinase (MAPK) and $NF-{\kappa}B$ transcriptional factor in primary neonatal cardiomyocytes. When added to cultures of cardiomyocytes, the combined agents $(LPS/IFN-[\gamma}\;or\;TNF-{\alpha}/IFN-{\gamma})$ had stimulatory effect on the production of IL-6 and the elevation was significantly reduced by SB203580, a specific p38 MAPK inhibitor. SB203580 inhibited protein production and gene expression of IL-6 in a concentration-dependent manner. In this study, $IFN-{\gamma}$ enhancement of $TNF-{\alpha}-induced\;NF-{\kappa}B$ binding affinity as well as p38 MAP kinase activation was observed. However, a specific inhibitor of p38 MAPK, SB203580, had no effect on $TNF-{\alpha}/IFN-{\gamma}\;or\;LPS/IFN-{\gamma}-induced\;NF-{\kappa}B$ activation. This study strongly suggests that these pathways about $TNF-{\alpha}/IFN-{\gamma}$ or $LPS/IFN-{\gamma}-activated$ IL-6 release can be primarily dissociated in primary neonatal cardiomyocytes.

The Effects of Bee Venom and Melittin Solution on PGE2, COX-2, and NF-kB Dependent Luciferase Activity in RAW 264.7 Cells (봉약침액(蜂藥鍼液)과 Melittin 약침액(藥鍼液)이 RAW 264.7 세포의 PGE2, COX-2 및 NF-kB에 미치는 영향(影響))

  • Jeong, Il-kook;Song, Ho-sueb
    • Journal of Acupuncture Research
    • /
    • v.21 no.6
    • /
    • pp.19-36
    • /
    • 2004
  • Objective : The purpose of this study was to investigate the effect of Bee Venom and Melittin Solution on the lipopolysaccharide(LPS) and sodium nitroprusside(SNP)-induced expression of prostaglandin $E_2(PGE_2)$, cyclooxygenase-2(COX-2), nuclear factor kappa B($NF-{\kappa}B$) and nuclear factor kappa B($NF-{\kappa}B$) dependent luciferase activity in RAW 264.7 cells, a murine macrophage cell line. Methods : The expression of PGE2 was determined by determination of $PEG_2$, COX-2 was by western blotting with corresponding antibodies, $NF-{\kappa}B$ was by gel mobility shift assay method and $NF-{\kappa}B$ dependent luciferase activity was investigated by luciferase assay in RAW 264.7 cells. Results : 1. LPS and SNP-induced expression of $PEG_2$ was significant after 24hour. 2. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS-induced expression of $PEG_2$ and, the $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly SNP-induced expression of $PEG_2$ compared with control, respectively. The 0.5 and $1{\mu}g/mL$ of bee venom could not significantly inhibit SNP-induced expression of $PEG_2$ compared with control. 3. The $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS and SNP-induced expression of COX-2 compared with control, respectively. The 0.5 and $1{\mu}g/mL$ of bee venom inclined to decrease LPS and SNP-induced expression of COX-2 compared with control. 4. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS and SNP-induced expression of $NF-{\kappa}B$ compared with control, respectively. 5. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS-induced expression of $NF-{\kappa}B$ dependent luciferase activity and the 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly SNP-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control, respectively. The $NF-{\kappa}B$ inhibitor also inhibited significantly LPS and SNP-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control. 6. The 0.5, 1 and $5{\mu}g/mL$ of bee venom and the 5 and $10{\mu}g/mL$ of melittin solution inhibited significantly LPS + IFN-${\gamma}$, TNF-${\alpha}$ and LPS + TNF-${\alpha}$-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control, respectively. The $NF-{\kappa}B$ inhibitor also inhibited significantly LPS and SNP-induced expression of $NF-{\kappa}B$ dependent luciferase activity compared with control. Conclusions : These results suggest the inhibitory action of bee venom and melittin solution on the inflammatory mediators such as $PEG_2$, COX-2 and $NF-{\kappa}B$.

  • PDF

Inhibition of LPS-induced NO Production and NT-$\textsc{k}B$ Activation by a Sesquiterpene from Saussurea lappa

  • Jin, Mirim;Lee, Hwa-Jin;Ryu, Jae-Ha;Chung, Kyu-Sun
    • Archives of Pharmacal Research
    • /
    • v.23 no.1
    • /
    • pp.54-58
    • /
    • 2000
  • To elucidate the molecular mechanisms for the suppression of LPS-induced nitric oxide (NO) production by a dehydrocostus lactone (DL) from Saussurea lappa, we examined the preventive effect of this compound on $NF-{\kappa}B$ activation in LPS-treated RAW 264.7 macrophages and U937 human monocytic cells. The results suggest that the suppression of NO production is mediated by the inhibitory action on the i-NOS gene expression through the inactivation of $NF-{\kappa}B$ and this sesquiterpene lactone can act as a pharmacological inhibitor of the $NF-{\kappa}B$ activation.

  • PDF

Suppressive Effect of Arazyme on Neutrophil Apoptosis in Normal and Allergic Subjects

  • Kim, In Sik;Lee, Ji-Sook
    • Biomedical Science Letters
    • /
    • v.20 no.4
    • /
    • pp.244-249
    • /
    • 2014
  • Arazyme is a metalloprotease secreted by Aranicola proteolyticus that was previously shown to suppress cytokine expression of keratinocytes and endothelial cells and inhibit histopathological features in an atopic dermatitis-like animal model. However, the regulatory effects of arazyme in other allergic diseases have yet to be elucidated. In this study, we investigated whether arazyme is effective against neutrophil apoptosis in allergic diseases such as allergic rhinitis and asthma. Arazyme inhibited neutrophil apoptosis of normal subjects in a dose-dependent manner. However, the antiapoptotic effect of arazyme was reversed by LY294002, an inhibitor of PI3K, AKTi, an inhibitor of Akt, PD98059, an inhibitor of MEK, and BAY-11-7085, an inhibitor of NF-${\kappa}B$. Arazyme induced activation of NF-${\kappa}B$ via PI3K/Akt/ERK pathway. The anti-apoptotic effect of arazyme is associated with inhibition of cleavage of caspase 3 and caspase 9. Arazyme inhibited constitutive apoptosis of neutrophil in a dose-dependent manner in allergic subjects, and its mechanism was shown to be associated with PI3K/Akt/ERK/NF-${\kappa}B$. The results presented here improve our understanding of neutrophil apoptosis regulation and will facilitate development of drugs for treatment of allergic diseases.

The Role of NF-${\kappa}B$ in the TNF-$\alpha$-induced Apoptosis of Lung Cancer Cell Line (폐암세포주의 TNF-$\alpha$ 유발 apoptosis에서 NF-${\kappa}B$의 역할)

  • Kim, J.Y.;Lee, S.H.;HwangBo, B.;Lee, C.T.;Kim, O.H.;Han, S.K.;Shim, O.S.;Yoo, C.G.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.2
    • /
    • pp.166-179
    • /
    • 2000
  • Background: The main reason for the failure of anti-cancer chemotherapy is the build up of resistance by cancer cells to apoptosis. The activation of NF-${\kappa}B$ in many cancer cell lines is reported to be underlying mechanism behind the build up of resistance of cancer cells to apoptosis. However, this relationship varied depending on the cells used in the experiments. In this study, the role of NF-${\kappa}B$ activation in the TNF-$\alpha$-induced apoptosis in lung cancer cell line was evaluated. Methods: NCI-H157 cells were used in all experiments. Cells were exposed to a high dose of TNF-$\alpha$(20 ng/ml) for 24 or 48 hours with or without blocking NF-${\kappa}B$ activation. TNF-$\alpha$-induced activation of NF-${\kappa}B$ was inhibited either by overexpression of $I{\kappa}B{\alpha}$-super repressor($I{\kappa}B{\alpha}$-SR) or by pre-treatment with proteasome inhibitor. Cell viability and apoptosis were evaluated with MTT assay and Western blot analysis for PARP fragment, respectively. Results: Cell viability of NCI-H157 cells was not affected by TNF-$\alpha$ treatment alone; however, combined treatment with TNF-$\alpha$ and cycloheximide reduced cell viability significantly, indicating that resistance to TNF-$\alpha$ is mediated by the new proteins synthesized after TNF-$\alpha$ stimulation. To evaluate the role of NF-${\kappa}B$ in the transcription of anti-apoptotic proteins. delete NF-${\kappa}B$ activation was inhibited before TNF-$\alpha$ stimulation. as described above. $AD5I{\kappa}B{\alpha}$-SR-transduction inhibited TNF-$\alpha$-induced nuclear translocation of p65. TNF-$\alpha$-induced cell death and apoptosis increased after inhibition of TNF-$\alpha$-induced activation of NF-${\kappa}$ by methods. Conclusion: These results suggest that TNF-$\alpha$-induced activation of NF-${\kappa}B$ may be closely related to the acquisition of the resistance to TNF-$\alpha$-induced apoptosis in lung cancer cells. Therefore. blocking of NF-${\kappa}B$ pathway can be a useful therapeutic modality in the treatment of lung cancer.

  • PDF

Raloxifene, a Selective Estrogen Receptor Modulator, Inhibits Lipopolysaccharide-induced Nitric Oxide Production by Inhibiting the Phosphatidylinositol 3-Kinase/Akt/Nuclear Factor-kappa B Pathway in RAW264.7 Macrophage Cells

  • Lee, Sin-Ae;Park, Seok Hee;Kim, Byung-Chul
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.48-52
    • /
    • 2008
  • We here demonstrate an anti-inflammatory action of raloxifene, a selective estrogen receptor modulator, in lipopolysaccharide (LPS)-induced murine macrophage RAW264.7 cells. Treatment with raloxifene at micromolar concentrations suppressed the production of nitric oxide (NO) by down-regulating expression of the inducible nitric oxide synthase (iNOS) gene in LPS-activated cells. The decreased expression of iNOS and subsequent reduction of NO were due to inhibition of nuclear translocation of transcription factor NF-${\kappa}B$. These effects were significantly inhibited by exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, or by expression of a dominant negative mutant of PI 3-kinase. In addition, pretreatment with raloxifene reduced LPS-induced Akt phosphorylation as well as NF-${\kappa}B$ DNA binding activity and NF-${\kappa}B$-dependent reporter gene activity. Thus our findings indicate that raloxifene exerts its anti-inflammatory action in LPS-stimulated macrophages by blocking the PI 3-kinase-Akt-NF-${\kappa}B$ signaling cascade, and eventually reduces expression of pro-inflammatory genes such as iNOS.

Nuclear Factor-${\kappa}B$ Dependent Induction of TNF-${\alpha}$ and IL-$1{\beta}$ by the Aggregatibacter actinomycetemcomitans Lipopolysaccharide in RAW 264.7 Cells

  • Na, Hee Sam;Jeong, So Yeon;Park, Mi Hee;Kim, Seyeon;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.39 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Aggregatibacter actinomycetemcomitans is an important pathogen in the development of localized aggressive periodontitis. Lipopolysaccharide (LPS) is a virulent factor of periodontal pathogens that contributes to alveolar bone loss and connective tissue degradation in periodontal disease. Our present study was designed to investigate the cytokine expression and signaling pathways regulated by A. actinomycetemcomitans LPS (Aa LPS). Cytokine gene expression profiling in RAW 264.7 cells was performed by microarray analyses. The cytokine mRNA and protein levels and related signaling pathways induced by Aa LPS were measured by RT-PCR, ELISA and western blotting. Microarray results showed that Aa LPS strongly induced the expression of NF-${\kappa}B$, NF-${\kappa}B$-related genes, inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$ in RAW 264.7 cells. NF-${\kappa}B$ inhibitor pretreatment significantly reduced the levels of TNF-${\alpha}$ and IL-$1{\beta}$ mRNA and protein. In addition, the Aa LPS-induced TNF-${\alpha}$ and IL-$1{\beta}$ expression was inhibited by p38/JNK MAP kinase inhibitor pretreatment. These results show that Aa LPS stimulates TNF-${\alpha}$ and IL-$1{\beta}$ expression through NF-${\kappa}B$ and p38/JNK activation in RAW 264.7 cells, suggesting the essential role of this pathway in the pathogenesis of localized aggressive periodontitis.