• Title/Summary/Keyword: NEXT GENERATION SEQUENCING

Search Result 445, Processing Time 0.032 seconds

The Biological Functions of Plant Long Noncoding RNAs (식물의 긴비암호화 RNA들의 생물학적 기능)

  • Kim, Jee Hye;Heo, Jae Bok
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1097-1104
    • /
    • 2016
  • With the development of next generation sequencing (NGS), large numbers of transcriptional molecules have been discovered. Most transcripts are non -coding RNAs (ncRNAs). Among them, long non-coding RNAs (lncRNAs) with more than 200 nucleotides represent functional RNA molecule that will not be translated into protein. In plants, lncRNAs are transcribed by RNA polymerase II (Pol II) or Pol III, Pol VI and Pol V. After transcription of these lncRNAs, more RNA processing mechanisms such as splicing and polyadenylation occurs. The expression of plant lncRNAs is very low and is tissue specific. However, these lncRNAs are strongly induced by specific external stimuli. Because different external stimuli including environmental stresses induce a large number of plant lncRNAs, these lncRNAs have been gradually considered as new regulatory factors of various biological and development processes such as epigenetic repression, chromatin modification, target mimicry, photomorphogenesis, protein relocalization, environmental stress response, pathogen infection in plants. Moreover, some lncRNAs act as precursor of short RNAs. Although a large number of lncRNAs have been predicted and identified in plants, our current understanding of the biological function of these lncRNAs is still limited and their detailed regulatory mechanisms should be elucidated continuously. Here, we reviewed the biogenesis and regulation mechanisms of lncRNAs and summarized the molecular functions unraveled in plants.

Strategies to Increase Domestic Lettuce Circulations through Improving Valuable End-User Traits (고부가가치 맞춤형 상추품종 개발을 통한 국내 상추유통 제고 전략)

  • Kim, Tae-Sung;Jang, Young-Hee;Hwang, Hee-Joong
    • Journal of Distribution Science
    • /
    • v.16 no.8
    • /
    • pp.63-68
    • /
    • 2018
  • Purpose - Lettuce (Lactuca sativ L.) is one of the economically important vegetable crops, which worldwide market value is over 100 billion U.S. dollar. In Korea, about 89.7 kilo ton of lettuce was produced in 3400ha in 2016, recoded as No. 1 vegetable crop in domestic green house production. However, recently, domestic lettuce production and cultivation areas are all getting decreased. Thus, novel approaches are needed to be implemented to revive the production. Research design, data and methodology - In this review paper, we first prioritized the end-user traits which are imperative to positively stimulate the domestic lettuce market and discussed relevant genomics strategies. Especially, we assessed a possibility whether school meal program would be a potential niche market. Results - The genomics technologies, which become widely applied in the crop biotechnology since 2008 when next generation sequencing method was developed, may be a good solution in the crop improvement, efficiently gathering valuable information of agriculturally useful traits. Significantly, in lettuce, the high quality whole genome sequence, based on Lactuca sativa cv. Salinas, is publically available and this genomics platform, thus, would be implemented in lettuce breeding program to innovate relevant end-user traits both for the farmers and customers, including the disease resistance to the Fusarium wilt, productivity under hot weather conditions, various nutritional qualities and so forth. These improvements will boost domestic lettuce industries in the near future. Conclusions - Due to the nutritional distinctions comparing to the western style lettuces, domestic leaf lettuces could be one of the important vegetables in the school meal programs. To make it happen, we would better devise diverse recipes to make a salad with it, instead of only using as a wrap vegetable. Meanwhile, novel lettuce varieties need to be developed, which are favorable to the students and also easy to be handled with while processing. Overall, to achieve international competence in the lettuce industries, we need to create elite lettuce varieties that satisfies domestic farmers as well as customers, suitable to various niche markets, such as school meal program. Thus, efficient breeding programs using genomics approaches should be established in advance and careful monitoring on the preference of the related customers for a niche market be continued persistently.

Changes in Oral Microbiota in Patients Receiving Radical Concurrent Chemoradiotherapy for The Head and Neck Squamous Cell Carcinoma

  • Kim, Jin Ho;Choi, Yoon Hee;An, Soo-Youn;Son, Hee Young;Choi, Chulwon;Kim, Seyeon;Chung, Jin;Na, Hee Sam
    • International Journal of Oral Biology
    • /
    • v.43 no.1
    • /
    • pp.13-21
    • /
    • 2018
  • Radiotherapy (RT) is a mainstay in the treatment of head and neck squamous cell carcinoma (HNSCC). For locally advanced HCSCC, concurrent chemoradiotherapy (CCRT) benefits HCSCC patients in terms of better survival and loco-regional control. In this study, we evaluated changes in oral microbiota in patients, who received CCRT for head and neck cancer. Oral rinsed samples were weekly collected before and during CCRT and at 4 weeks following treatment from HNSCC patients, who had received 70 Gy of radiation delivered to the primary sites for over 7 weeks and concurrent chemotherapy. Oral microbiota changes in three patients were analyzed by next-generation sequencing using 16S rRNA 454 pyrosequencing. On an average, 15,000 partial 16S rRNA gene sequences were obtained from each sample. All sequences fell into 11 different bacterial phyla. During early CCRT, the microbial diversity gradually decreased. In a patient, who did not receive any antibiotics during the CCRT, Firmicutes and Proteobacteria were the most abundant phylum. During the early CCRT, proteobacteria gradually decreased while Firmicutes increased. During the late CCRT, firmicutes gradually decreased while Bacteroides and Fusobacteria increased. In all the patients, yellow complex showed a gradual decrease, while orange and red complex showed a gradual increase during the CCRT. At 4 weeks after CCRT, the recovery of oral microbiota diversity was limited. During CCRT, there was a gradual increase in major periodontopathogens in association with the deterioration of the oral hygiene. Henceforth, it is proposed that understanding oral microbiota shift should provide better information for the development of effective oral care programs for patients receiving CCRT for HNSCC.

Parallel Computation For The Edit Distance Based On The Four-Russians' Algorithm (4-러시안 알고리즘 기반의 편집거리 병렬계산)

  • Kim, Young Ho;Jeong, Ju-Hui;Kang, Dae Woong;Sim, Jeong Seop
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 2013
  • Approximate string matching problems have been studied in diverse fields. Recently, fast approximate string matching algorithms are being used to reduce the time and costs for the next generation sequencing. To measure the amounts of errors between two strings, we use a distance function such as the edit distance. Given two strings X(|X| = m) and Y(|Y| = n) over an alphabet ${\Sigma}$, the edit distance between X and Y is the minimum number of edit operations to convert X into Y. The edit distance between X and Y can be computed using the well-known dynamic programming technique in O(mn) time and space. The edit distance also can be computed using the Four-Russians' algorithm whose preprocessing step runs in $O((3{\mid}{\Sigma}{\mid})^{2t}t^2)$ time and $O((3{\mid}{\Sigma}{\mid})^{2t}t)$ space and the computation step runs in O(mn/t) time and O(mn) space where t represents the size of the block. In this paper, we present a parallelized version of the computation step of the Four-Russians' algorithm. Our algorithm computes the edit distance between X and Y in O(m+n) time using m/t threads. Then we implemented both the sequential version and our parallelized version of the Four-Russians' algorithm using CUDA to compare the execution times. When t = 1 and t = 2, our algorithm runs about 10 times and 3 times faster than the sequential algorithm, respectively.

Development of SNP Molecular Marker for Red-fleshed Color Identification of Peach Genetic Resources (복숭아 유전자원의 적색 과육 판별 SNP 분자표지 개발)

  • Kim, Se Hee;Nam, Eun Young;Cho, Kang Hee;Jun, Ji Hae;Chung, Kyeong Ho
    • Korean Journal of Plant Resources
    • /
    • v.32 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Various colors of fruit skin and flesh are the most popular commercial criteria for peach classification. In order to breed new red-fleshed peach cultivar, many cross seedlings and generations should be maintained. Therefore it is necessary to develop early selection markers to screen seedlings with target traits to increase breeding efficiency. For the comparison of transcription profiles in peach cultivars differing in flesh color expression, two cDNA libraries were constructed. Differences in gene expression between red-fleshed peach cultivar, 'Josanghyeoldo' and white-fleshed peach cultivar, 'Mibaekdo' were analyzed by next-generation sequencing (NGS). Expressed sequence tag (EST) of clones from the two cultivars were selected for nucleotide sequence determination and homology searches. Putative single nucleotide polymorphisms (SNP) were screened from peach EST contigs by high resolution melting (HRM) analysis displayed specific difference between 8 red-fleshed peach cultivars and 24 white-fleshed peach cultivars. All 72 pairs of SNPs were discriminated and the HRM profiles of amplicons were established. In the study reported here, the development of SNP markers for distinguishing between red and white fleshed peach cultivars by HRM analysis offers the opportunity to use DNA markers. This SNP marker could be useful for peach marker assisted breeding and provide a good reference for relevant research on molecular mechanisms of color variation in peach cultivars.

Analysis of Soil Fungal Community Related to Rhododendron mucronulatum in Biseul Mountain County Park, South Korea (우리나라 비슬산군립공원 진달래나무(Rhododendron mucronulatum)와 관련된 토양 진균 군집의 pyrosequencing 분석)

  • Jeong, Min-Ji;Kim, Dong-Hyun;Choi, Doo-Ho;Lee, In-Seon;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.377-384
    • /
    • 2021
  • Researching the soil fungal community is important to understand the interaction between fungi and living plants. However, too few studies have examined the soil fungal community and their interactions with plants. Rhododendron mucronulatum, commonly known as Korean rosebay, is an important forest resource that has aesthetic, ecological, and potential pharmacological values. We used a pyrosequencing method to analyze the characteristics of fungal communities from R. mucronulatum soil samples from Biseul mountain county park, which is one of the famous places for large R. mucronulatum colonies in South Korea. We collected soil core samples in February and August at three sites in the Biseul Mountain County Park, taking into consideration the regional and seasonal conditions. We obtained 454,157 validated reads after pyrosequencing all six samples. The fungal communities from the first observation spot in August had the richest species diversity among the samples. Basidiomycota, Ascomycota, and Mortierellomycota were major phyla in the samples. Agaricales_f, Mortierellaceae, and Clavariaceae were major families in the samples. The genus Mortierella was the most dominant in all six samples. Overall, 19 genera could be associated with R. mucronulatum. Sample 1 had 109 genera in sample 1, sample 2 had 111 genera, and sample 3 had 112 genera that were uniquely identified. The samples collected in August had 28 identified genera, that existed only in summer samples, indicating a weather effect. This study can be used as basic research to understand the relationship between soil fungi and plants.

Application of Molecular Diagnostics Technology in the Development of a Companion Diagnostics for Malignant Solid Tumors (악성 고형암의 항암제 동반진단 기술에서 분자진단기술의 적용)

  • Kim, Jin-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.3
    • /
    • pp.365-374
    • /
    • 2019
  • Unlike benign tumors, malignant tumors are capable of metastasis, easy to relapse, poor survival, and low quality of life. In Korea, here is a tendency to treat the tumors collectively according to the General Principles of Cancer Chemotherapy(GPCC) of the Health Insurance Review & Assessment Service (HIRA). But recently, companion diagnostics(CDx) is recommended rather than unilateral medication because biomarker-based molecular diagnostics is possible to predict the drug response of patients before drug treatment. Not only domestic but also overseas Food and Drug Administratio (FDA) recommends the development of the CDx system at the stage of drug development to ensure the responsiveness and safety of medicines. In this study, I focused on the necessity of CDx development direction as well as CDx development status through literature review. Furthermore I also discussed CDx types according to the molecular diagnostic technology such as immunohistochemistry (IHC), polymerase chain reaction (PCR), in situ hybridization (ISH), and next-generation sequencing (NGS) not only in the approved CDx but also in the developing one by US FDA. And I suggested the technology issue of CDx development process such as a selection of molecular diagnostics at the time of release, a clear understanding of the CDx mechanism, and a convergence of drug with CDx development. The necessity of social insurance system also was proposed for CDx development.

Single Nucleotide Polymorphism (SNP) Discovery and Kompetitive Allele-Specific PCR (KASP) Marker Development with Korean Japonica Rice Varieties

  • Cheon, Kyeong-Seong;Baek, Jeongho;Cho, Young-il;Jeong, Young-Min;Lee, Youn-Young;Oh, Jun;Won, Yong Jae;Kang, Do-Yu;Oh, Hyoja;Kim, Song Lim;Choi, Inchan;Yoon, In Sun;Kim, Kyung-Hwan;Han, Jung-Heon;Ji, Hyeonso
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.391-403
    • /
    • 2018
  • Genome resequencing by next-generation sequencing technology can reveal numerous single nucleotide polymorphisms (SNPs) within a closely-related cultivar group, which would enable the development of sufficient SNP markers for mapping and the identification of useful genes present in the cultivar group. We analyzed genome sequence data from 13 Korean japonica rice varieties and discovered 740,566 SNPs. The SNPs were distributed at 100-kbp intervals throughout the rice genome, although the SNP density was uneven among the chromosomes. Of the 740,566 SNPs, 1,014 SNP sites were selected on the basis of polymorphism information content (PIC) value higher than 0.4 per 200-kbp interval, and 506 of these SNPs were converted to Kompetitive Allele-Specific PCR (KASP) markers. The 506 KASP markers were tested for genotyping with the 13 sequenced Korean japonica rice varieties, and polymorphisms were detected in 400 KASP markers (79.1%) which would be suitable for genetic analysis and molecular breeding. Additionally, a genetic map comprising 205 KASP markers was successfully constructed with 188 $F_2$ progenies derived from a cross between the varieties, Junam and Nampyeong. In a phylogenetic analysis with 81 KASP markers, 13 Korean japonica varieties showed close genetic relationships and were divided into three groups. More KASP markers are being developed and these markers will be utilized in gene mapping, quantitative trait locus (QTL) analysis, marker-assisted selection and other strategies relevant to crop improvement.

The complete genome sequence of a marine sponge-associated bacteria, Bacillus safensis KCTC 12796BP, which produces the anti-allergic compounds (해양 해면체로부터 분리한 세균으로 항알러지성물질을 생산하는 Bacillus safensis KCTC 12796BP의 유전체 해독)

  • Hanh, Nguyen Phan Kieu;Kim, Soo Hee;Kim, Geum Jin;Choi, Hyukjae;Nam, Doo Hyun
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.448-452
    • /
    • 2018
  • The full genome sequence of Bacillus safensis KCTC 12796BP which had been isolated from the marine sponge in the seawater of Jeju Island, was determined by Pac-Bio next-generation sequencing system. A circular chromosome in the length of 3,935,874 bp was obtained in addition to a circular form of plasmid having 36,690 bp. The G + C content of chromosome was 41.4%, and that of plasmid was 37.3%. The number of deduced CDSs in the chromosome was 3,980, whereas 36 CDS regions were determined in a plasmid. Among the deduced CDSs in chromosome, 81 tRNA genes and 24 rRNA genes in addition to one tmRNA were allocated. More than 30 CDSs for sporulation, 16 CDSs for spore coat, and 20 CDSs for germination were also assigned in the chromosome. Several genes for capsular polysaccharide biosynthesis and for flagella biosynthesis and chemotaxis in addition to genes for osmotic tolerance through glycine-choline betaine pathway were also identified. Above all, the biosynthetic gene cluster for anti-allergic compounds seongsanamides were found among two non-ribosomal peptide synthetase (NRPS) gene clusters for secondary metabolites.