• 제목/요약/키워드: NEURAL

검색결과 15,246건 처리시간 0.038초

해외선물 스캘핑을 위한 강화학습 알고리즘의 성능비교 (Performance Comparison of Reinforcement Learning Algorithms for Futures Scalping)

  • 정득교;이세훈;강재모
    • 문화기술의 융합
    • /
    • 제8권5호
    • /
    • pp.697-703
    • /
    • 2022
  • 최근 Covid-19 및 불안한 국제정세로 인한 경기 침체로 많은 투자자들이 투자의 한 수단으로써 파생상품시장을 선택하고 있다. 하지만 파생상품시장은 주식시장에 비해 큰 위험성을 가지고 있으며, 시장 참여자들의 시장에 대한 연구 역시 부족한 실정이다. 최근 인공지능 분야의 발달로 파생상품시장에서도 기계학습이 많이 활용되고 있다. 본 논문은 해외선물에 분 단위로 거래하는 스캘핑 거래의 분석을 위해 기계학습 기법 중 하나인 강화학습을 적용하였다. 데이터 세트는 증권사에서 거래되는 해외선물 상품들 중 4개 상품을 선정해, 6개월간 1분봉 및 3분봉 데이터의 종가, 이동평균선 및 볼린저 밴드 지표들을 이용한 21개의 속성으로 구성하였다. 실험에는 DNN 인공신경망 모델과 강화학습 알고리즘인 DQN(Deep Q-Network), A2C(Advantage Actor Critic), A3C(Asynchronous A2C)를 사용하고, 학습 데이터 세트와 테스트 데이터 세트를 통해 학습 및 검증 하였다. 에이전트는 스캘핑을 위해 매수, 매도 중 하나의 행동을 선택하며, 행동 결과에 따른 포트폴리오 가치의 비율을 보상으로 한다. 실험 결과 에너지 섹터 상품(Heating Oil 및 Crude Oil)이 지수 섹터 상품(Mini Russell 2000 및 Hang Seng Index)에 비해 상대적으로 높은 누적 수익을 보여 주었다.

딥러닝 알고리즘을 이용한 인쇄된 별색 잉크의 색상 예측 연구 (A Study on A Deep Learning Algorithm to Predict Printed Spot Colors)

  • 전수현;박재상;태현철
    • 산업경영시스템학회지
    • /
    • 제45권2호
    • /
    • pp.48-55
    • /
    • 2022
  • The color image of the brand comes first and is an important visual element that leads consumers to the consumption of the product. To express more effectively what the brand wants to convey through design, the printing market is striving to print accurate colors that match the intention. In 'offset printing' mainly used in printing, colors are often printed in CMYK (Cyan, Magenta, Yellow, Key) colors. However, it is possible to print more accurate colors by making ink of the desired color instead of dotting CMYK colors. The resulting ink is called 'spot color' ink. Spot color ink is manufactured by repeating the process of mixing the existing inks. In this repetition of trial and error, the manufacturing cost of ink increases, resulting in economic loss, and environmental pollution is caused by wasted inks. In this study, a deep learning algorithm to predict printed spot colors was designed to solve this problem. The algorithm uses a single DNN (Deep Neural Network) model to predict printed spot colors based on the information of the paper and the proportions of inks to mix. More than 8,000 spot color ink data were used for learning, and all color was quantified by dividing the visible light wavelength range into 31 sections and the reflectance for each section. The proposed algorithm predicted more than 80% of spot color inks as very similar colors. The average value of the calculated difference between the actual color and the predicted color through 'Delta E' provided by CIE is 5.29. It is known that when Delta E is less than 10, it is difficult to distinguish the difference in printed color with the naked eye. The algorithm of this study has a more accurate prediction ability than previous studies, and it can be added flexibly even when new inks are added. This can be usefully used in real industrial sites, and it will reduce the attempts of the operator by checking the color of ink in a virtual environment. This will reduce the manufacturing cost of spot color inks and lead to improved working conditions for workers. In addition, it is expected to contribute to solving the environmental pollution problem by reducing unnecessarily wasted ink.

Bi-LSTM 모델을 이용한 음악 생성 시계열 예측 (Prediction of Music Generation on Time Series Using Bi-LSTM Model)

  • 김광진;이칠우
    • 스마트미디어저널
    • /
    • 제11권10호
    • /
    • pp.65-75
    • /
    • 2022
  • 딥러닝은 기존의 분석 모델이 갖는 한계를 극복하고 텍스트, 이미지, 음악 등 다양한 형태의 결과물을 생성할 수 있는 창의적인 도구로 활용되고 있다. 본 고에서는 Niko's MIDI Pack 음원 파일 1,609개를 데이터 셋으로 삼아 전처리 과정을 수행하고, 양방향 장단기 기억 순환 신경망(Bi-LSTM) 모델을 이용하여, 효율적으로 음악을 생성할 수 있는 전처리 방법과 예측 모델을 제시한다. 생성되는 으뜸음을 바탕으로 음악적 조성(調聲)에 적합한 새로운 시계열 데이터를 생성할 수 있도록 은닉층을 다층화하고, 디코더의 출력 게이트에서 인코더의 입력 데이터 중 영향을 주는 요소의 가중치를 적용하는 어텐션(Attention) 메커니즘을 적용한다. LSTM 모델의 인식률 향상을 위한 파라미터로서 손실함수, 최적화 방법 등 설정 변수들을 적용한다. 제안 모델은 MIDI 학습의 효율성 제고 및 예측 향상을 위해 높은음자리표(treble clef)와 낮은음자리표(bass clef)를 구분하여 추출된 음표, 음표의 길이, 쉼표, 쉼표의 길이와 코드(chord) 등을 적용한 다채널 어텐션 적용 양방향 기억 모델(Bi-LSTM with attention)이다. 학습의 결과는 노이즈와 구별되는 음악의 전개에 어울리는 음표와 코드를 생성하며, 화성학적으로 안정된 음악을 생성하는 모델을 지향한다.

딥러닝과 머신러닝을 이용한 아파트 실거래가 예측 (Apartment Price Prediction Using Deep Learning and Machine Learning)

  • 김학현;유환규;오하영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권2호
    • /
    • pp.59-76
    • /
    • 2023
  • 코로나 시대 이후 아파트 가격 상승은 비상식적이었다. 이러한 불확실한 부동산 시장에서 가격 예측 연구는 매우 중요하다. 본 논문에서는 다양한 부동산 사이트에서 자료 수집 및 크롤링을 통해 2015년부터 2020년까지 87만개의 방대한 데이터셋을 구축하고 다양한 아파트 정보와 경제지표 등 가능한 많은 변수를 모은 뒤 미래 아파트 매매실거래가격을 예측하는 모델을 만든다. 해당 연구는 먼저 다중 공선성 문제를 변수 제거 및 결합으로 해결하였다. 이후 의미있는 독립변수들을 뽑아내는 전진선택법(Forward Selection), 후진소거법(Backward Elimination), 단계적선택법(Stepwise Selection), L1 Regularization, 주성분분석(PCA) 총 5개의 변수 선택 알고리즘을 사용했다. 또한 심층신경망(DNN), XGBoost, CatBoost, Linear Regression 총 4개의 머신러닝 및 딥러닝 알고리즘을 이용해 하이퍼파라미터 최적화 후 모델을 학습시키고 모형간 예측력을 비교하였다. 추가 실험에서는 DNN의 node와 layer 수를 바꿔가면서 실험을 진행하여 가장 적절한 node와 layer 수를 찾고자 하였다. 결론적으로 가장 성능이 우수한 모델로 2021년의 아파트 매매실거래가격을 예측한 후 실제 2021년 데이터와 비교한 결과 훌륭한 성과를 보였다. 이를 통해 머신러닝과 딥러닝은 다양한 경제 상황 속에서 투자자들이 주택을 구매할 때 올바른 판단을 할 수 있도록 도움을 줄 수 있을 것이라 확신한다.

딥러닝 기반 고속철도교량의 주행안전성 및 승차감 예측 (Running Safety and Ride Comfort Prediction for a Highspeed Railway Bridge Using Deep Learning)

  • 김민수;최상현
    • 한국전산구조공학회논문집
    • /
    • 제35권6호
    • /
    • pp.375-380
    • /
    • 2022
  • 고속철도 교량은 열차 하중에 의한 공진으로 인한 동적응답 증폭의 위험이 존재하므로 설계기준에 따른 동적해석을 통한 주행안전성 및 승차감 검토를 반드시 수행하여야 한다. 그러나 주행안전성 및 승차감 산정 절차는 열차의 종류별로 임계속도를 포함하여 설계속도의 110km/h까지 10km/h 간격으로 동적해석을 일일이 수행해야 하므로 많은 시간과 경비가 소요된다. 이 연구에서는 딥러닝 알고리즘을 활용하여 별도의 동적해석 없이 주행안전성 및 승차감을 사전에 예측할 수 있는 딥러닝 기반 예측 시스템 개발하였다. 제안된 시스템은 철도교량의 열차별, 속도별 동적해석 결과를 학습한 후 학습 완료된 신경망을 기반으로 한 예측 시스템이며, 열차속도, 교량 특성 등의 입력파라미터에 따른 주행안전성 및 승차감 산정 결과를 사전에 예측할 수 있다. 제안된 시스템의 성능을 확인하기 위하여 단경간 직선 단순보 교량을 대상으로 한 주행안전성 및 승차감 예측을 수행하였고, 주행안전성 및 승차감 산정을 위한 상판 연직변위 및 상판 연직가속도를 높은 정확도로 예측할 수 있음을 확인하였다.

설계민감도 해석에서 역전파 방법을 사용한 응력제한조건 위상최적설계 (Stress Constraint Topology Optimization using Backpropagation Method in Design Sensitivity Analysis)

  • 김민근;김석찬;김재승;이재경;이근호
    • 한국전산구조공학회논문집
    • /
    • 제35권6호
    • /
    • pp.367-374
    • /
    • 2022
  • 본 논문에서는 역전파 방법 기반 자동미분법을 이용하여 설계민감도를 구하고 이를 응력제한조건을 고려한 위상최적설계에 적용하였다. 응력제한조건이 있는 위상최적화문제는 특이점(singularity)과 응력의 국부성(local nature of stress constraint)문제, 그리고 설계 변수에 대한 비선형성의 문제를 포함하고 최적해를 얻기가 매우 힘들다. 특이점 문제를 해결하기 위해서 응력 완화(stress relaxation) 기법을 사용하였고, 응력의 국부성을 해결하기 위해 p-norm을 이용한 전역 응력치를 제한조건에 사용하였다. 설계 변수에 대한 비선 형성을 극복하기 위해 해석적인 방법으로 정확한 설계민감도를 구하는 것이 중요하다. 위상최적설계에서 기존에는 보조변수방법 (adjoint variable method)을 사용하여 빠르고 정확한 설계민감도를 구했지만, 설계민감도를 해석적으로 구해야 하고, 보조평형방정식을 추가로 풀어야 하는 어려움이 있다. 이를 해결하기 위해서 인공신경망에서 최적 가중치(weights)와 편차(biases)를 구할 때 쓰이는 역전파 기법을 이용하여 설계민감도를 구하고 이를 응력제한조건을 고려한 위상최적설계에 적용하였다. 역전파 기법은 자동미분에 쓰이는 기법으로 목적함수나 제한조건에 대한 설계민감도를 별도의 수식유도 없이 간단하게 구할 수 있는 장점이 있다. 또한, 미분값을 구하는 역전파의 과정이 보조평형방정식을 푸는 것보다 계산시간이 빠르고 해석적 방법으로 구한 설계민감도와 같은 정확도를 보여준다.

세포 배양 가능한 커버슬립형 초음파 변환자 (Cell-cultivable ultrasonic transducer integrated on glass-coverslip)

  • 이근형;박진형
    • 한국음향학회지
    • /
    • 제42권5호
    • /
    • pp.412-421
    • /
    • 2023
  • 초음파 뇌 자극술을 통하여 뇌 심부의 국소 지역에 있는 뇌 세포의 활성화를 유도할 수 있으며, 이를 통하여 저하된 뇌 기능을 치료하는데 효과가 있음이 보고되어 왔다. 반면, 초음파 자극의 종류에 따라 신경 변조의 효율과 방향이 달라질 수 있음이 알려져 있어, 적절한 초음파 자극의 종류를 확립하는 연구가 중요하다. 따라서, 본 논문에서는 이를 효과적으로 최적화 하기 위해 세포 배양시 사용되는 커버슬립 기반의 초음파 변환자를 제안하고자 한다. 균일한 초음파 자극을 전도하기 위해서 폴리머 압전소자(Poly-vinylidene fluoride-trifluorethylene, PVDF-TrFE)를 스핀 코팅하고 패를린 절연층을 상단에 적층시켜 음압 출력을 극대화 시켰다. 개발된 초음파 변환자 융합 커버슬립은 초음파자극기 표면에 배양된 수십개의 신경세포에 균일하고 정확한 초음파 자극을 전달 할 수 있고, 자극에 따른 세포의 반응을 형광 현미경으로 실시간 관찰 가능하다. 따라서, 동일한 초음파 자극에 대한 세포의 반응 신호를 최대 수십개 세포로부터 동시에 획득 가능하므로, 반응 신호를 평균 한다면 낮은 강도의 초음파 자극에 따른 뇌 세포의 미세한 반응을 검출할 수 있을 뿐만 아니라, 초음파 변환자와 물의 표면 등에서 발생하는 정현파에 의한 자극의 왜곡 현상을 줄일 수 있어서 사용자가 원하는 초음파 자극을 정확하게 세포로 전달 가능하다. 이렇게 개발된 초음파 변환자를 통해 변환자 표면에 배양된 별세포에서 6 MHz, 0.2 MPa의 저강도 초음파 자극에 의해 유도된 칼슘 반응을 성공적으로 관찰할 수 있었다.

관련 동영상 정보를 활용한 YouTube 가짜뉴스 탐지 기법 (Fake News Detection on YouTube Using Related Video Information)

  • 김준호;신용준;안현철
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.19-36
    • /
    • 2023
  • 정보통신기술의 발전으로 인해 누구나 쉽게 정보를 생산, 유포할 수 있게 되면서, 이를 악용하여 의도적으로 유포하는 거짓 정보인 가짜뉴스가 새로운 문제로 대두되기 시작하였다. 초기에 텍스트 방식으로 주로 전파되던 가짜뉴스는 점차 진화하여 이제는 멀티미디어 형식으로 퍼지고 있다. 유튜브는 2005년에 설립된 이후 세계 최고의 동영상 플랫폼으로 성장하면서 전 세계 사람들이 대부분 이용하고 있다. 하지만 유튜브는 가짜뉴스가 퍼지는 주요 창구가 되며 사회적인 문제를 일으키고 있다. 유튜브의 가짜뉴스를 탐지하기 위하여 다양한 학자들이 연구를 진행해 왔다. 가짜뉴스 탐지 연구에는 콘텐츠 기반의 접근과 배경정보 기반의 접근이 존재하는데 기존 가짜뉴스 연구와 유튜브의 가짜뉴스 탐지 연구를 살펴보면 콘텐츠 기반의 접근이 다수를 차지하고 있다. 본 연구에서는 콘텐츠 기반의 가짜뉴스 탐지가 아닌 배경정보 기반의 가짜뉴스 탐지기법을 제안하는데, 그 중에서도 유튜브에서 제공하는 관련 동영상 정보를 활용하여 가짜뉴스를 탐지하는 방법을 제안하고자 한다. 구체적으로 관련 동영상에서 얻은 정보와 원본 동영상에서 얻은 정보를 임베딩 기술인 Doc2vec을 이용하여 벡터화 한 후, 딥러닝 네트워크인 합성곱 신경망(CNN)을 통하여 가짜뉴스를 판별하고자 하였다. 실증분석 결과 제안 기법은 기존의 콘텐츠 기반으로 유튜브 가짜뉴스를 탐지하는 접근에 비해 보다 우수한 예측 성능을 보임을 확인하였다. 이러한 본 연구의 제안 기법은 파급력이 높은 유튜브 상에서 유포되는 가짜뉴스의 전파를 사전에 예방함으로써, 우리사회를 보다 안전하고 신뢰할 수 있도록 만드는데 기여할 수 있을 것으로 기대한다.

검색어 빈도 데이터를 반영한 코로나 19 확진자수 예측 딥러닝 모델 (Predicting the Number of Confirmed COVID-19 Cases Using Deep Learning Models with Search Term Frequency Data)

  • 정성욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권9호
    • /
    • pp.387-398
    • /
    • 2023
  • 코로나 19 유행은 인류 생활 방식과 패턴에 큰 영향을 주었다. 코로나 19는 침 방울(비말)은 물론 공기를 통해서도 감염되기 때문에 가능한 대면 접촉을 피하고 많은 사람이 가까이 모이는 장소는 피할 것을 권고하고 있다. 코로나 19 환자와 접촉했거나 코로나 19 환자가 발생한 장소에 있었던 사람이 코로나 19에 감염되었을 것을 염려한다면 구글에서 코로나 19 증상을 찾아볼 것이라고 충분히 예상해 볼 수 있다. 본 연구에서는 과거 독감 감시와 관리에 중요 역할을 했었던 구글 트렌드(Google Trends)를 다시 소환하고 코로나 19 확진자수 데이터와 결합하여 미래의 코로나 19 확진자수를 예측할 수 있을지 딥러닝 모델(DNN & LSTM)을 사용한 탐색적 데이터 분석을 실시하였다. 특히 이 연구에 사용된 검색어 빈도 데이터는 공개적으로 사용할 수 있으며 사생활 침해의 우려도 없다. 심층 신경망 모델(DNN model)이 적용되었을 때 한국에서 가장 많은 인구가 사는 서울(960만 명)과 두 번째로 인구가 많은 부산(340만 명)에서는 검색어 빈도 데이터를 포함하여 예측했을 때 더 낮은 오류율을 기록했다. 이와 같은 분석 결과는 검색어 빈도 데이터가 일정 규모 이상의 인구수를 가진 도시에서 중요한 역할을 할 수 있다는 것을 보여주는 것이다. 우리는 이와 같은 예측이 더 강력한 예방 조치의 실행이나 해제 같은 정책을 결정하는데 근거 자료로 충분히 사용될 수 있을 것으로 믿는다.

날씨 변화에 따른 실외 LED 전광판의 시인성 확보를 위한 딥러닝 구조 개발 (Development of Deep Learning Structure to Secure Visibility of Outdoor LED Display Board According to Weather Change)

  • 이선구;이태윤;이승호
    • 전기전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.340-344
    • /
    • 2023
  • 본 논문에서는 날씨 변화에 따른 실외 LED 전광판의 시인성 확보를 위한 딥러닝 구조 개발에 관한 연구를 제안한다. 제안하는 기법은 영상장치를 이용한 딥러닝을 사용하여 날씨 변화에 따른 LED 휘도를 자동 조절함으로써 실외 LED 전광판의 시인성을 확보한다. 날씨 변화에 따른 LED 휘도를 자동 조절하기 위하여, 먼저 평면화된 배경 부분 이미지 데이터에 대한 전처리 과정을 거친 후, 합성곱 네트워크를 이용하여 학습시켜 날씨에 대한 분류를 진행할 수 있는 딥러닝 모델을 만들어낸다. 적용된 딥러닝 네트워크는 Residual learning 함수를 사용하여 입력값과 출력값의 차이를 줄임으로써 초기의 입력값의 특징을 가지고 가면서 학습하도록 유도한다. 다음에 날씨를 인식하여 날씨 변화에 따라 실외 LED 전광판의 휘도를 조절하는 제어기를 사용하여 주변 환경이 밝아지면 휘도가 높아지도록 변경하여 선명하게 보이도록 한다. 또한, 주변 환경이 어두워지면 빛의 산란에 의해 시인성이 떨어지기 때문에 전광판의 휘도가 내려가도록 하여 선명하게 보이도록 한다. 본 논문에서 제안하는 방법을 적용하여 LED 전광판의 날씨 변화에 따른 휘도 측정의 공인 측정 실험 결과는, 날씨 변화에 따라 실외 LED 전광판의 시인성이 확보됨을 확인하였다.