• 제목/요약/키워드: NETWORK CENTRALITY

검색결과 755건 처리시간 0.023초

공동연구 네트워크 분석을 위한 중심성 지수에 대한 비교 연구 (A Comparative Study on the Centrality Measures for Analyzing Research Collaboration Networks)

  • 이재윤
    • 정보관리학회지
    • /
    • 제31권3호
    • /
    • pp.153-179
    • /
    • 2014
  • 이 연구의 목적은 공동연구 네트워크에서 연구자의 영향력과 입지를 분석하는데 사용되는 중심성 지수들의 특징에 대해서 고찰하는 것이다. 전통적인 이진 네트워크 중심성 지수로는 연결정도중심성, 매개중심성, 근접중심성, 페이지랭크를 다루었고, 공동연구 네트워크에서의 중심성을 측정하기 위해서 개발되었거나 사용된 가중 네트워크 중심성 지수로는 삼각매개중심성, 평균연관성, 가중페이지랭크, 공동연구 h-지수와 공동연구 hs-지수, 복합연결정도중심성, c-지수에 대해서 살펴보았으며, 새로운 지수로 제곱근합 지수 SSR을 제안하였다. 이들 12종의 중심성 지수를 건축학, 문헌정보학, 마케팅 분야의 세 가지 공동연구 네트워크에 적용해본 결과 각 지수들의 특성과 지수 간 관계를 파악할 수 있었다. 분석 결과 공동연구 네트워크에서 공동연구 범위와 공동연구 강도를 모두 고려하기 위해서는 가중 네트워크 중심성 지수를 사용해야 하는 것으로 나타났다. 특히 공동연구 범위와 강도를 모두 고려하는 전역중심성을 측정하기 위해서는 삼각매개중심성 지수를 사용하고, 지역중심성을 측정하기 위해서는 SSR 지수를 사용하는 것이 바람직하다고 제안하였다.

워크플로우 소셜 네트워크 근접중심성 분석 알고리즘 (A Closeness Centrality Analysis Algorithm for Workflow-supported Social Networks)

  • 박성주;김광훈
    • 인터넷정보학회논문지
    • /
    • 제14권5호
    • /
    • pp.77-85
    • /
    • 2013
  • 본 논문에서는 워크플로우 소셜 네트워크(WSSN, Workflow-supported Social Network) 근접중심성 분석 알고리즘을 제안한다. 워크플로우모델과 모델의 실행을 기반으로 형성되는 업무수행자들간의 협업 관계를 워크플로우 소셜 네트워크라고 정의하고, 이를 기존의 소셜 네트워크 근접중심성 분석기법을 적용하여 워크플로우 소셜 네트워크의 근접중심성을 분석하는 알고리즘을 설계한다. 특히, 제안한 알고리즘의 적용 사례를 통해 특정 워크플로우모델로부터 해당 워크플로우 소셜 네트워크 근접중심성을 분석함으로써 본 논문에서 제안한 알고리즘의 정확성 및 적합성을 검증한다.

소셜네트워크분석(SNA)을 활용한 수상운송서비스 무역 네트워크 분석 연구 (A Study on International Trade of Water Transport Service using Social Network Analysis)

  • 박선율
    • 무역학회지
    • /
    • 제47권3호
    • /
    • pp.75-92
    • /
    • 2022
  • This study aims to analyze the International trade network of Water transport service using Social Network Analysis for defining the status of Korean Water transport industry. This study use World Input-Output Table of Asian Development Bank from 2000 to 2020 and build the International trade matrix of Water transport service from that. Therefore, this study analyze Out-degree centrality, In-degree centrality and betweenness centrality of Korea and other main countries in the matrix of World Water transport industry. As a result, Korea rank above 10th in the all centralities and the total output also rank 8th in the world, therefore, this study show the importance of Korean Water transport industry in the world. However, Singapore has the highest centrality in the world, even though China has the largest Total output among 63 countries.

Movie Popularity Classification Based on Support Vector Machine Combined with Social Network Analysis

  • Dorjmaa, Tserendulam;Shin, Taeksoo
    • 한국IT서비스학회지
    • /
    • 제16권3호
    • /
    • pp.167-183
    • /
    • 2017
  • The rapid growth of information technology and mobile service platforms, i.e., internet, google, and facebook, etc. has led the abundance of data. Due to this environment, the world is now facing a revolution in the process that data is searched, collected, stored, and shared. Abundance of data gives us several opportunities to knowledge discovery and data mining techniques. In recent years, data mining methods as a solution to discovery and extraction of available knowledge in database has been more popular in e-commerce service fields such as, in particular, movie recommendation. However, most of the classification approaches for predicting the movie popularity have used only several types of information of the movie such as actor, director, rating score, language and countries etc. In this study, we propose a classification-based support vector machine (SVM) model for predicting the movie popularity based on movie's genre data and social network data. Social network analysis (SNA) is used for improving the classification accuracy. This study builds the movies' network (one mode network) based on initial data which is a two mode network as user-to-movie network. For the proposed method we computed degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality as centrality measures in movie's network. Those four centrality values and movies' genre data were used to classify the movie popularity in this study. The logistic regression, neural network, $na{\ddot{i}}ve$ Bayes classifier, and decision tree as benchmarking models for movie popularity classification were also used for comparison with the performance of our proposed model. To assess the classifier's performance accuracy this study used MovieLens data as an open database. Our empirical results indicate that our proposed model with movie's genre and centrality data has by approximately 0% higher accuracy than other classification models with only movie's genre data. The implications of our results show that our proposed model can be used for improving movie popularity classification accuracy.

언어네트워크분석을 통한 국내 문화정책 연구동향 분석(2008-2017) (An Analysis of Cultural Policy-related Studies' Trend in Korea using Semantic Network Analysis(2008-2017))

  • 박양우
    • 한국콘텐츠학회논문지
    • /
    • 제17권11호
    • /
    • pp.371-382
    • /
    • 2017
  • 본 연구는 콘텐츠산업정책을 포괄하는 문화정책에 대한 학술적 연구의 동향을 알고자 언어네트워크분석을 통해 국내의 가장 대표적인 문화정책 분야 전문학술지인 '문화정책논총'에 수록된 186편의 논문 주제어 832개를 대상으로 분석을 시도하였다. 시간적 범위는 한국연구재단 한국학술지인용색인 홈페이지(www.kci.go.kr)에 수록되어 있는 2008년 10월부터 2017년 1월까지로 하였다. 언어네트워크 분석은 주제어 빈도수, 밀도분석과 중심성을 지표로 분석하였으며, 이를 바탕으로 Netdraw 프로그램에 의한 시각화를 시도하였다. 언어네트워크분석 결과 가장 많은 빈도수를 기록한 주제어는 '문화'였고, '문화정책/행정', '문화산업/문화콘텐츠', '정책'이 최다의 빈도수를 기록한 그룹에 포함되었다. 빈도수가 높은 '문화정책/행정'과 '문화산업/문화콘텐츠'는 대부분의 중심성에서 우위를 차지했으나, 매개중심성은 낮아 다른 주제어들과의 중매 역할에는 한계를 드러냈다.

문헌 단위 인용 네트워크 내 인용과 중심성 지수 간 관계 추정에 관한 연구 (Curve Estimation among Citation and Centrality Measures in Article-level Citation Networks)

  • 유소영
    • 정보관리학회지
    • /
    • 제29권2호
    • /
    • pp.193-204
    • /
    • 2012
  • 이 연구에서는 인용 및 동시인용 문헌 네트워크에서의 중심성 지수를 사용한 추론 통계 적용의 첫 번째 단계로써 이들 간 관계의 선형성을 살펴보고자 하였다. 703개의 문헌 동시인용 네트워크를 활용하여 인용 빈도, 연결정도 중심성, 인접 중심성, 매개 중심성 간의 4가지 주요 관계의 패턴을 살펴본 결과, 모든 인용 및 중심성 간 관계가 선형모델보다는 비선형적 모델로 더 잘 설명될 수 있음을 통계적으로 확인되었다. 따라서 이들 간의 인과관계에 대한 다중회귀분석과 같은 추론 통계 분석의 기반이 되는 선형성을 확보하기 위해서는 논리적인 기준에 근거한 데이터 변환이나 실제값을 구간값으로 변환하는 과정이 필요하다고 할 수 있다.

텍스트 마이닝과 소셜 네트워크 기법을 활용한 국제무역 키워드, 중심성과 토픽에 대한 빅데이터 분석 (A Big Data Analysis on Research Keywords, Centrality, and Topics of International Trade using the Text Mining and Social Network)

  • 이재득
    • 무역학회지
    • /
    • 제47권4호
    • /
    • pp.137-159
    • /
    • 2022
  • This study aims to analyze international trade papers published in Korea during the past 2002-2022 years. Through this study, it is possible to understand the main subject and direction of research in Korea's international trade field. As the research mythologies, this study uses the big data analysis such as the text mining and Social Network Analysis such as frequency analysis, several centrality analysis, and topic analysis. After analyzing the empirical results, the frequency of key word is very high in trade, export, tariff, market, industry, and the performance of firm. However, there has been a tendency to include logistics, e-business, value and chain, and innovation over the time. The degree and closeness centrality analyses also show that the higher frequency key words also have been higher in the degree and closeness centrality. In contrast, the order of eigenvector centrality seems to be different from those of the degree and closeness centrality. The ego network shows the density of business, sale, exchange, and integration appears to be high in order unlike the frequency analysis. The topic analysis shows that the export, trade, tariff, logstics, innovation, industry, value, and chain seem to have high the probabilities of included in several topics.

온라인 패션커뮤니티 네트워크에서의 구전 영향력과 확산력에 관한 연구 (Study on Influence and Diffusion of Word-of-Mouth in Online Fashion Community Network)

  • 송기은;이덕희
    • 복식
    • /
    • 제65권6호
    • /
    • pp.25-35
    • /
    • 2015
  • The purpose of this study is to investigate the characteristics of members and communities that have significant influence in the online fashion community through their word-of-mouth activities. In order to identify the influence and the diffusion of word-of-mouth in fashion community, the study selected one online fashion community. Then, the study sorted the online posts and comments made on fashion information and put them into the matrix form to perform social network analysis. The result of the analysis is as follows: First, the fashion community network used in the study has many active members that relay information very quickly. Average time for information diffusion is very short, taking only one or two days in most cases. Second, the influence of word-of-mouth is led by key information produced from only a few members. The number of influential members account for less than 20% of the total number of community members, which indicate high level of degree centrality. The diffusion of word-of-mouth is led by even fewer members, which represent high level of betweenness centrality, compared to the case of degree centrality. Third, component characteristic shares similar information with about 70% of all members being linked to maximize information influence and diffusion. Fourth, a node with high degree centrality and betweenness centrality shares similar interests, presenting strain effect to particular information. Specially, members with high betweenness centrality show similar interests with members of high degree centrality. The members with high betweenness centrality also help expansion of related information by actively commenting on posts. The result of this research emphasizes the necessity of creation and management of network to efficiently convey fashion information by identifying key members with high level of information influence and diffusion to enhance the outcome of online word-of-mouth.

전기·전자산업의 중간재 글로벌가치사슬 네트워크 구조와 중심성 분석 (Network Structure and Centrality Analysis of Global Value Chains in Electrical and Electronic Industries)

  • 김석민
    • 무역학회지
    • /
    • 제46권1호
    • /
    • pp.113-134
    • /
    • 2021
  • This study analyzed the centrality of the GVCs network and the value-added-based production structure of the electrical and electronic industries using ADB-MIRO and social network analysis methods. According to the analysis, the centrality and power of the GVSc intermediate goods network were differentiated into China, the United States, and the EU due to the advancement of industrial structure in Asia. In the 2000 network, the United States and Japan had a very strong influence in all aspects, including connectivity and strength. However, in 2017, China's power index rose to number one among 62 countries in the network. Furthermore, this study presented strategic implications of the Korean electrical and electronic industries to respond to the reorganization of GVSs based on the analysis results.

대규모 워크플로우 소속성 네트워크를 위한 근접 중심도 랭킹 알고리즘 (An Estimated Closeness Centrality Ranking Algorithm for Large-Scale Workflow Affiliation Networks)

  • 이도경;안현;김광훈
    • 인터넷정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.47-53
    • /
    • 2016
  • 워크플로우 소속성 네트워크는 워크플로우 기반 조직의 수행자와 업무 사이의 연관관계를 나타내는 소셜 네트워크의 한 형태이며, 이를 기반으로 연결 중심도, 근접 중심도, 사이 중심도, 위세 중심도 등과 같은 다양한 분석 기법들이 제안되었다. 특히, 전사적 워크플로우 모델을 기반으로 하는 소속성 네트워크의 근접 중심도 분석은 워크플로우 소속성 네트워크의 규모가 증가함에 따라, 중심도 및 랭킹 계산의 시간 복잡도 문제점을 가진다는 것을 발견하였다. 본 논문에서는 근접 중심도 분석의 시간 복잡도 문제를 개선하기 위해, 근사치 추정 방법을 이용한 워크플로우 기반 소속성 네트워크의 추정 근접 중심도 기반 랭킹 알고리즘을 제안한다. 노드의 타입이 수행자인, 워크플로우 예제 모델을 추정 근접 중심도 기반 랭킹 알고리즘에 적용한 성능 분석을 실시하였다. 수행 결과, 네트워크 규모 관점에서의 정확도는 평균적으로 47.5% 향상되었고, 샘플 모집단 비율 관점에서는 평균적으로 9.44%정도의 향상된 수치를 보였다. 또한, 추정 근접 중심도 랭킹 알고리즘의 평균 계산 시간은 네트워크의 노드 수가 2400개, 샘플 모집단의 비율이 30%일 때, 기존 근접 중심도 랭킹 알고리즘의 평균 계산 시간보다 82.40%의 높은 성능을 보였다.