• 제목/요약/키워드: NELL2

검색결과 10건 처리시간 0.029초

A Role of Central NELL2 in the Regulation of Feeding Behavior in Rats

  • Jeong, Jin Kwon;Kim, Jae Geun;Kim, Han Rae;Lee, Tae Hwan;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • 제40권3호
    • /
    • pp.186-194
    • /
    • 2017
  • A brain-enriched secreting signal peptide, NELL2, has been suggested to play multiple roles in the development, survival, and activity of neurons in mammal. We investigated here a possible involvement of central NELL2 in regulating feeding behavior and metabolism. In situ hybridization and an immunohistochemical approach were used to determine expression of NELL2 as well as its colocalization with proopiomelanocortin (POMC) and neuropeptide Y (NPY) in the rat hypothalamus. To investigate the effect of NELL2 on feeding behavior, 2 nmole of antisense NELL2 oligodeoxynucleotide was administered into the lateral ventricle of adult male rat brains for 6 consecutive days, and changes in daily body weight, food, and water intake were monitored. Metabolic state-dependent NELL2 expression in the hypothalamus was tested in vivo using a fasting model. NELL2 was noticeably expressed in the hypothalamic nuclei controlling feeding behavior. Furthermore, all arcuatic POMC and NPY positive neurons produced NELL2. The NELL2 gene expression in the hypothalamus was up-regulated by fasting. However, NELL2 did not affect POMC and NPY gene expression in the hypothalamus. A blockade of NELL2 production in the hypothalamus led to a reduction in daily food intake, followed by a loss in body weight without a change in daily water intake in normal diet condition. NELL2 did not affect short-term hunger dependent appetite behavior. Our data suggests that hypothalamic NELL2 is associated with appetite behavior, and thus central NELL2 could be a new therapeutic target for obesity.

Neural Tissue-Specific Epidermal Growth Factor (EGF)-like Domain Containing Protein, NELL2, Plays on Important Role in the Control Regulation of Puberty Onset in the Female Rat Hypothalamus

  • Ha, Chang-Man;Kang, Hae-Mook;Lee, Byung-Ju
    • Animal cells and systems
    • /
    • 제4권4호
    • /
    • pp.367-373
    • /
    • 2000
  • In the present study we determined if NELL2, a neural tissue-specific protein containing 6 epidermal growth factor (EGF)-like repeat domains, plays an important role in the regulation of puberty initiation in the rat hypothalamus. We origin811y found that NELL2 is a new estrogen-responsive gene in hypothalami derived from estrogen-sterilized and control rats using a PCR differential display. In the 40-day-old female rat hypothalamus, NELL2 was up-regulated by neonatal estrogen treatment. In situ hybridization histochemistry showed that NELL2 is very abundant in the ventromedial hypothalamic nucleus that is responsible for the control of sex behavior. NELL2 mRNA level in the medial basal hypothalamus showed a dramatic increase before female puberty onset, which suggests that NELL2 may be involved in the process regulating female puberty onset. We attemped to block NELL2 synthesis with intracerebroventricular injection of an antisense oligodeoxynucleotide (ODN) to the NELL2 mRNA, and examined its effect on the puberty onset of the female rat. The antisense ODN significantly delayed puberty initiation determined by vaginal opening. In summary, NELL2 may play an important role in the regulation of female puberty onset.

  • PDF

신경세포 분화에서 세포주기 조절인자로서의 NELL2 유전자의 역할 (NELL2 gene as regulator of cell cycle in neuron differentiation)

  • 정미림;오연미;박우생;박상규
    • Clinical and Experimental Pediatrics
    • /
    • 제49권10호
    • /
    • pp.1100-1105
    • /
    • 2006
  • 목 적 : 신경세포 분화에 있어 NELL2가 세포 주기와 세포자 멸사에 어떤 영향을 미치는지를 규명하고자 하였다. 방 법 : HiB5 세포에 NELL2를 전달감염시켜 배양하여 세포수를 측정하였다. 세포자멸사를 분석하기 위해 DNA 분절검사를 시행하였으며 PI염색으로 DNA양을 측정하였다. 세포주기의 조절에 관여하는 단백질에 대한 NELL2의 효과를 측정하기 위하여 Western blot과 면역염색을 시행하였다. 결 과 : NELL2를 전달감염시킨 군에서 세포수가 의미가 있게 적었고 DNA 분절검사에서 세포자멸사를 확인하였으며 $G_1$ 정지가 증가하였다. Western blot과 면역염색결과 Rb단백, p53, E2F1(KH-95)이 NELL2를 전달감염시킨 군에서 증가하고 cyclin D가 NELL2를 전달감염시킨 군에서 감소하였다. 결 론 : HiB5 세포에서 NELL2에 의하여 일정 수준에서의 세포자멸사가 동반되고 세포 주기에 있어 $G_1$기의 정지가 일어나며 세포주기를 조절하는 단백질의 변화가 발생함을 확인하였다. 따라서 NELL2가 뇌에서 신경세포 분화에 중요한 역할을 할 걸로 생각된다.

Transcriptional Regulatory Role of NELL2 in Preproenkephalin Gene Expression

  • Ha, Chang Man;Kim, Dong Hee;Lee, Tae Hwan;Kim, Han Rae;Choi, Jungil;Kim, Yoonju;Kang, Dasol;Park, Jeong Woo;Ojeda, Sergio R.;Jeong, Jin Kwon;Lee, Byung Ju
    • Molecules and Cells
    • /
    • 제45권8호
    • /
    • pp.537-549
    • /
    • 2022
  • Preproenkephalin (PPE) is a precursor molecule for multiple endogenous opioid peptides Leu-enkephalin (ENK) and Met-ENK, which are involved in a wide variety of modulatory functions in the nervous system. Despite the functional importance of ENK in the brain, the effect of brain-derived factor(s) on PPE expression is unknown. We report the dual effect of neural epidermal growth factor (EGF)-like-like 2 (NELL2) on PPE gene expression. In cultured NIH3T3 cells, transfection of NELL2 expression vectors induced an inhibition of PPE transcription intracellularly, in parallel with downregulation of protein kinase C signaling pathways and extracellular signal-regulated kinase. Interestingly, these phenomena were reversed when synthetic NELL2 was administered extracellularly. The in vivo disruption of NELL2 synthesis resulted in an increase in PPE mRNA level in the rat brain, suggesting that the inhibitory action of intracellular NELL2 predominates the activation effect of extracellular NELL2 on PPE gene expression in the brain. Biochemical and molecular studies with mutant NELL2 structures further demonstrated the critical role of EGF-like repeat domains in NELL2 for regulation of PPE transcription. These are the first results to reveal the spatio-specific role of NELL2 in the homeostatic regulation of PPE gene expression.

Region- and Neuronal Phenotype-specific Expression of NELL2 in the Adult Rat Brain

  • Jeong, Jin Kwon;Kim, Han Rae;Hwang, Seong Mun;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.186-192
    • /
    • 2008
  • NELL2, a neural tissue-enriched protein, is produced in the embryo, and postembryonically in the mammalian brain, with a broad distribution. Although its synthesis is required for neuronal differentiation in chicks, not much is known about its function in the adult mammalian brain. We investigated the distribution of NELL2 in various regions of the adult rat brain to study its potential functions in brain physiology. Consistent with previous reports, NELL2-immunoreactivity (ir) was found in the cytoplasm of neurons, but not in glial fibrillary acidic protein (GFAP)-positive glial cells. The highest levels of NELL2 were detected in the hippocampus and the cerebellum. Interestingly, in the cerebellar cortex NELL2 was observed only in the GABAergic Purkinje cells not in the excitatory granular cells. In contrast, it was found mainly in the hippocampal dentate gyrus and pyramidal cell layer that contains mainly glutamatergic neurons. In the dentate gyrus, NELL2 was not detected in the GFAP-positive neural precursor cells, but was generally present in mature neurons of the subgranular zone, suggesting a role in this region restricted to mature neurons.

NELL2 Function in the Protection of Cells against Endoplasmic Reticulum Stress

  • Kim, Dong Yeol;Kim, Han Rae;Kim, Kwang Kon;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • 제38권2호
    • /
    • pp.145-150
    • /
    • 2015
  • Continuous intra- and extracellular stresses induce disorder of $Ca^{2+}$ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.

NELL2 Function in Axon Development of Hippocampal Neurons

  • Kim, Han Rae;Kim, Dong Hee;An, Ji Young;Kang, Dasol;Park, Jeong Woo;Hwang, Eun Mi;Seo, Eun Jin;Jang, Il Ho;Ha, Chang Man;Lee, Byung Ju
    • Molecules and Cells
    • /
    • 제43권6호
    • /
    • pp.581-589
    • /
    • 2020
  • Neurons have multiple dendrites and single axon. This neuronal polarity is gradually established during early processes of neuronal differentiation: generation of multiple neurites (stages 1-2); differentiation (stage 3) and maturation (stages 4-5) of an axon and dendrites. In this study, we demonstrated that the neuron-specific n-glycosylated protein NELL2 is important for neuronal polarization and axon growth using cultured rat embryonic hippocampal neurons. Endogenous NELL2 expression was gradually increased in parallel with the progression of developmental stages of hippocampal neurons, and overexpression of NELL2 stimulated neuronal polarization and axon growth. In line with these results, knockdown of NELL2 expression resulted in deterioration of neuronal development, including inhibition of neuronal development progression, decreased axon growth and increased axon branching. Inhibitor against extracellular signal-regulated kinase (ERK) dramatically inhibited NELL2-induced progression of neuronal development and axon growth. These results suggest that NELL2 is an important regulator for the morphological development for neuronal polarization and axon growth.

파티클보드와 아피통단판을 구성 접착한 복합판넬의 휨성질 (Bending Properties of the Composite Panel Composed of Particleboard and Apitong (Dipterocarpus grandiflorus) Veneer)

  • 이필우;윤형운;오세창
    • Journal of the Korean Wood Science and Technology
    • /
    • 제19권3호
    • /
    • pp.53-61
    • /
    • 1991
  • Mechanical properties of composite panel made with 3mm thick Apitong(Dipterocarpus grandiflorus) veneer on each face of particleboard core of 4 different specific gravity were determined. The results obtained were as follows: 1. Measured MOR and MOE increased with an increased in specific gravity of particleboard core. 2. Test results showed that the difference in bending properties between flatwise bending and edgewise bending was present. The average MOE value of flatwise loading was higer than that of epdgewise loading. But it was shown reverse tendency in MoR and MOE. 3. The delamination between face veneer and core particle was found in flatwise bending but nell in edgewise. 4. These composite panel could be substituted for plywood and other panel materials in furniture making as considered suitable allowable stress and bending strength.

  • PDF