• Title/Summary/Keyword: NEBS

Search Result 5, Processing Time 0.024 seconds

Short-term Nutrient Enrichment Bioassays (NEBs) by Manipulation of TN:TP Ratios and the Response of Primary Productivity (as Chlorophyll-a) (N:P Ratio 조절에 의한 단기 영양염 첨가 바이오에세이(NEBs) 및 1차 생산력(엽록소-a)의 반응성 테스트)

  • Jeong, Da-Bin;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.383-392
    • /
    • 2013
  • The objective of this study was to determine the effects of N:P ratio on primary productivity measured as chlorophyll-a (CHL) using the approach of In Situ Nutrient Enrichment Bioassays (NEBs) in Daechung Reservoir. The effects of NEBs on the N:P mass ratios were compared with the field data obtained from monthly-chemical monitoring during 2009~2012. The short-term NEBs showed that the response of primary productivity in the phosphorus spiked treatments (5, 15, 20 and 30 N:P ratios) were greater than the responses in the control (C) and nitrogen spiked treatment (N:P ratio=150, $T_{VI}$). The response in the nitrogen treatment (N:P ratio=150, $T_{VI}$) was less compared to control and all five treatments ($T_I{\sim}T_{VI}$). The outcomes of the NEBs suggest that phosphorus limited the phytoplankton growth and nitrogen addition inhibited the algal growth. In the analysis of nutrients and CHL from the ambient epilimnetic water in Daechung Reservoir, minimum N:P ratios resulted in maximum concentrations of CHL. Overall, our results suggest that the N:P ratio was the key factor in regulating the phytoplankton growth in NEB experiments.

Long-term Water Quality Fluctuations in Daechung Reservoir and the Limiting Nutrient Evaluations Using In Situ Enclosure Nutrient Enrichment Bioassays (NEBs) (대청호에서 장기간 수질변동 및 인위적 Enclosure 영양염 투여실험에 따른 제한 영양염류 평가)

  • Park, Hyang-Mi;An, Kwang-Guk
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.551-560
    • /
    • 2012
  • The objectives of this study were to elucidate spatio-temporal heterogeneity of water chemistry and develop empirical models using trophic variables in Daechung Reservoir during 2005-2010 along with in situ tests of nutrient enrichment bioassays (NEB). The relations of water quality parameters in regard to precipitation showed that seasonal and interannual fluctuations of biological oxygen demand (BOD), total nitrogen (TN) and pH were minor, whereas conductivity, suspended solids (SS), and total phosphorus (TP) were largely varied in response to the magnitude of rainfall. The CHL maxima occurred immediately after the spate of TP during the high flow, indicating that phytoplankton growth was directly controlled by phosphorus. Empirical linear models of CHL-TP indicated that the variation of CHL in premonsoon was accounted 60% ($R^2$ = 0.60, p < 0.05, n = 54) by TP. In the mean time, empirical models of annual CHL-TN showed that the variation of CHL was weakly accounted ($R^2$ = 0.16, p < 0.001) by TN and more strongly ($R^2$ = 0.44, p < 0.001) by TP. Thus, the variation of CHL was more explained by the variation of TP than TN. In situ tests of Nutrient Enrichment Bioassays (NEBs) showed that the growth of CHL was greater in the P-treatments (as $PO_4-P$) than the control and N-treatment (as $NO_3-P$). Overall, our results suggest that phosphorus was aprimary limiting nutrient controlling the seasonal phytoplankton growth, based on the in situ experiments of NEBs.

Performance Evaluation of Seismic Isolation using Ball Bearing (볼 베이링을 이용한 면진장치의 성능평가)

  • Chang, Chun-Ho;Jang, Kwang-Seok;Lee, Young-Seok;Yeo, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.71-74
    • /
    • 2011
  • 최근 국제적으로 지진 발생 규모가 증대하고 있으며, 우리나라를 비롯한 많은 나라에서 구조물 및 주요 시설물에 대한 내진설계에 관심이 증대되고 있다. 지진방재는 건물자체의 안전성뿐만 아니라 내부설비 및 소장품에 대한 안전성까지 종합적으로 검토되어야 하며 이를 위한 대책이 필요한 실정이다. 본 연구의 주요목적은 예측 불가한 자연재해인 지진에 대해 일반적인 면진성능을 갖는 기초격리장치로서의 기능을 충실히 수행할 수 있는지를 확인하기 위하여 면진장치를 사용한 구조물의 면진효과를 검증하는 것이다. 또한 설계된 스프링의 탄성계수에 따른 실제 지진 시 응답의 차이를 알아보기 위하여 공진실험 및 진동대 실험을 실시하여 면진테이블 시스템의 면진성능을 평가하였다. 진동대 실험은 미국 "NEBS Requirements"에서 규정하는 요구응답스펙트럼에 상응하는 임의 지진파를 적용하였고 각각 x축과 z축 가진 후, x-y-z 축을 동시에 가진하여 수행하였다. 시험응답스펙트럼(Test Response Spectrum)은 요구응답스펙트럼(RRS)에 포락하도록 시험하여 최대가속도는 x축 방향 가진 시 90%의 감쇠효과가 나타났으며, 3축 방향 가진 시 x축 방향은 58%, y축 방향은 31%의 감쇠효과가 나타났다. 최대상대변위는 설계스트로크 140mm에 대하여 최대 85.54mm의 변위가 발생하여 안정적인 거동을 나타내었다. 본 연구에서 제안한 면진테이블 시스템은 중요 첨단장비 및 문화재 등의 전도 및 파괴를 방지하는 데 효과적일 것으로 판단된다.

  • PDF

Analysis of Algal Response Effects Using Nutrient Enrichment Bioassays in Shingu Reservoir (신구저수지 식물플랑크톤성장에 대한 제한 영양염 분석)

  • Lee, Jae-Yon;Lee, Sang-Jae;Lee, Jae-Hoon;Bae, Dae-Yeul;Choi, Ji-Woong;Hwang, Soon-Jin;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.35-41
    • /
    • 2008
  • Nutrient Enrichment Bioassays (NEBs) were conducted in the laboratory during June $22{\sim}28$, 2006 in order to determine primary limiting factor on the phytoplankton growth. For the NEBs, the water was sampled using a 10L polyethylene-lined container and dispensed into 2.5L container in the laboratory. The algal growths response in the control (C) and three treatments of phosphorus (P), 2-fold phosphorus (2P), and nitrate nitrogen $(NO_3-N)$ were monitored during 7 days. In the cubitainers which were spiked as P (T1) and 2P (T2) Chl-${\alpha}$ concentrations were decreased during the test period and the final concentrations was low than initial values. However, Chl-${\alpha}$ in the cubitainers which were spiked as $NO_3$(T3) and $P+NO_3$(T4) showed significant increases compared to the initial values, indicating that in the short-term experiments, nitrogen seemed to be a primary limiting nutrient during the periods of NEBs experiment. Long-term ambient nutrient data of TP and TN, and TN:TP mass ratios, however, showed a potential phosphorus limitation on phytoplankton growth and previous other researchers showed a variations of limiting nutrients by nitrogen or phosphorus depending on the seasons sampled and locations. In this study nitrogen as primary limiting nutrient in the NEBs seem to be an seasonal effect rather than the consistent nitrogen limitation.

Short-Term Nutrient Enrichment Bioassays and Nutrient Limitation in Daechung Reservoir (대청호에서의 단기 영양염 첨가 실험 및 제한 영양염류 분석)

  • Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.136-141
    • /
    • 2010
  • In situ experiments of Nutrient Enrichment Bioassays (NEBs) were conducted in the field along with in the laboratory to determine which nutrient limited phytoplankton growth as a indicator of primary productivity. For the NEBs, the water was sampled using a polyethylene-lined container and dispensed into 6 L water tank in the laboratory. The control (C, no nutrient spike) and six treatments of phosphorus (P), 2-fold phosphorus (2P), 4-fold phosphorus (4P), nitrate nitrogen ($NO_3$-N), 2-fold nitrate nitrogen ($2NO_3$-N), and phosphorus and nitrate nitrogen (P+$NO_3$-N) were set up in the lacustrine zone near the dam site, Daechung Reservoir in September, 2009 and analyzed the diel changes of total nitrogen (TN), total phosphorus (TP), and chlorophyll-$\alpha$ (Chl-$\alpha$) in the cubitainers. The short-term NEBs showed that algal response in the treatments spiked phosphorus (P, 2P, and 4P) were significantly (p < 0.05) greater than the response in the control (C), and nitrogen-spike. Also, the response in 4P-treatment was greater than those in the P- and 2P-treatments. In contrast, there was no significant differences (p > 0.20) between the $NO_3$-N and $2NO_3$-N treatment. The outcomes of the NEBs suggest that phosphorus limited the phytoplankton growth and nitrogen was not limited in this system. Furthermore, in the N + P treatments, the response was minimum, compared to all other treatments and the control, indicating that even if the system is evidently P-limited system, when added the nitrogen, the response showed the inhibition. Also, > 95% of observed long-term TN:TP ratios in the ambient water showed > 17, which is the criteria of P-limitation, supporting the P-limitation in the system. Overall, these results suggest that phytoplankton biomass near the dam is a direct linear function of P-loading near the watershed, if the phosphorus pool is mainly dissolved fraction.