• 제목/요약/키워드: NDWI

검색결과 55건 처리시간 0.029초

Landsat-8 위성영상 분석을 통한 산불피해 심각도 판정 및 영향 인자 도출 - 강릉, 동해 산불을 사례로 - (Determination of Fire Severity and Deduction of Influence Factors Through Landsat-8 Satellite Image Analysis - A Case Study of Gangneung and Donghae Forest Fires -)

  • 이수동;박경식;오충현;조봉교;유병혁
    • 한국환경생태학회지
    • /
    • 제38권3호
    • /
    • pp.277-292
    • /
    • 2024
  • 지형적인 이질성이 심한 강원도, 경상북도에 집중되고 있는 대형 산불을 관리하기 위해서는 위성 영상을 활용하여 효율적이고 신속한 피해 평가를 통한 의사 결정 과정이 필수적이다. 이에 본 연구는 2022년 3월 5일에 강원도 강릉 및 동해에서 발화하여 3월 8일 19시경 진화된 대형 산불을 대상으로, dNBR을 활용한 산불 심각도 산정과 등급에 영향을 미치는 환경요인을 도출하고자 하였다. 환경요인으로는 식생 또는 연료 유형을 대표하는 정규식생지수, 수종을 구분한 임상도, 수분함양을 나타내는 정규수분지수, 지형과 관련해서는 DEM 등을 수치화한 후 산불 심각도와의 상관관계를 분석하였다. 산불 심각도는 산불 피해 없음(Unbured)이 52.4%로 가장 넓었고, 심각도 낮음 42.9%, 심각도 보통-낮음 4.3%, 심각도 보통-높음 0.4% 순이었다. 환경요인의 경우 dNDVI, dNDWI와는 음의 상관관계를, 경사도와는 양의 상관관계를 나타내었다. 식생과 관련해서는 산불 심각도에 영향을 미치는 것으로 분석된 dNDVI, dNDWI, 경사도 모두에서 침엽수, 활엽수, 기타의 집단간 차이가 p-value < 2.2e-16로 유의미한 것으로 분석되었다. 특히, 침엽수와 활엽수의 차이가 명확하였는데, 강원도 지역에서 우점종인 소나무를 비롯하여 잣나무, 리기다소나무, 곰솔 등의 산불 심각도가 높아 침엽수가 활엽수에 비해 피해를 받는 것이 확인되었다.

LANDSAT 영상을 이용한 해안선 자동 추출과 변화탐지 모니터링 (Automatic Coastline Extraction and Change Detection Monitoring using LANDSAT Imagery)

  • 김미경;손홍규;김상필;장효선
    • 대한공간정보학회지
    • /
    • 제21권4호
    • /
    • pp.45-53
    • /
    • 2013
  • 지구 온난화와 이로 인한 해수면의 상승은 명백히 전 지구적으로 일어나고 있는 변화이며 해안선의 변화 또한 동반되고 있다. 해안선은 해수면의 상승뿐만 아니라 인위적인 활동에 의해서도 변화할 수 있으나 지구온난화에 의한 해안선 변화의 파악은 지구 온난화의 진행을 파악할 수 있는 지표로써 활용이 가능하다. 따라서 본 연구의 목적은 자동으로 해안선을 추출 및 변화를 파악하는 데에 있다. 본 연구에서는 자동으로 해안선을 추출하기 위해서 수분지수를 활용하여 물과 육지의 대조를 극대화하였으며, 해안선의 자동 추출이 용이하도록 하였다. 수분지수로 변환된 영상에서 자동으로 물과 육지를 분할하기 위하여 적정 임계값을 자동으로 찾을 수 있도록 영상처리 기법을 적용하였고, 경계선 검출 알고리즘을 통하여 해안선을 추출하였으며 추출된 해안선으로 변화를 탐지하는 방법론을 제시하고자 하였다. 자동으로 물과 육지를 분할하고 경계선을 찾는 영상처리 기법은 다른 자료의 도움 없이 LANDSAT 영상만을 이용하여 적용될 수 있으며 추출된 해안선 또한 기준자료로 이용된 NLCD(National Land Cover Database) 자료와의 비교를 통해 유사하다는 것을 확인할 수 있었다. 또한 지구 온난화의 지표로써의 활용 가치를 확인하기 위해 연구 대상지역을 지층의 온도가 연중 $0^{\circ}C$ 이하로 항상 얼어 있는 영구동토로 선정하여 영구동토의 해빙으로 인한 해안선 변화를 정량적으로 확인할 수 있었으며 해안선의 변화가 가속화한다는 사실을 확인할 수 있었다.

대규모 홍수 매핑을 위한 저해상도 광학위성영상의 활용 방법 (Methodology to Apply Low Spatial Resolution Optical Satellite Images for Large-scale Flood Mapping)

  • 박연연;이화선;김경탁;이규성
    • 대한원격탐사학회지
    • /
    • 제34권5호
    • /
    • pp.787-799
    • /
    • 2018
  • 대규모 홍수 발생 시 적기에 침수지의 공간적 분포와 변화를 모니터링하기 위한 정확하고 효율적인 매핑 수단이 필요하다. 본 연구에서는 높은 시간해상도로 동일 지역을 하루에 여러 번 관측이 가능한 저해상도 광학위성영상을 이용하여 대규모 홍수 범람으로 인한 침수지를 탐지하는 방법을 제시하고자 하였다. 2010년 1월 모로코 세부강 유역에서 발생한 대규모 홍수로 인한 침수지를 탐지하기 위하여 MODIS 일별 표면반사율 영상을 사용하였다. 영상에서 나타나는 침수지의 다양한 분광특성을 분석하여 침수지의 유형이 순수한 물표면과 물과 식물이 혼재된 형태가 함께 분포하고 있었다. 침수지 탐지는 분광특성에 따라 선정된 밴드의 반사율 영상에 직접 임계값을 적용하는 방법과 물 관련 분광지수에 임계값을 적용하는 방법을 비교하였다. 침수지 탐지 결과의 정확도 검증은 TM 영상에서 판독된 부분 지역의 침수지 지도와 비교하였다. NDWI를 제외한 나머지 방법에서 90% 이상의 높은 정확도를 얻었다. 모든 침수지 탐지 방법에서 SWIR밴드와 적색광밴드가 가장 중요하며, 2개의 밴드에 직접 임계값을 적용하는 단순한 방법으로도 정확하고 효율적인 침수지 탐지가 가능했다. 기존의 NIR밴드는 침수지 탐지에 있어서 큰 역할을 하지 못했지만, 식물이 혼재된 침수지의 유형을 구분하는데 유용했다.

고해상도 위성자료를 활용한 마른 잎 탐지 (Detection of Decay Leaf Using High-Resolution Satellite Data)

  • 심수영;진동현;성노훈;이경상;서민지;최성원;정대성;한경수
    • 대한원격탐사학회지
    • /
    • 제36권3호
    • /
    • pp.401-410
    • /
    • 2020
  • 최근 지구 온난화의 영향으로 변화하는 한반도 식물계절에 대한 연구가 많이 이루어지고 있다. 그러나 지리적인 특성상 봄철 식물계절에 비해 실측이 어려운 가을철 식물계절의 연구는 미비한 실정이다. 이에 본 연구에서는 대표적인 가을철 식물계절인 단풍과 낙엽 등을 '마른 잎'으로 정의하고 Landsat-8 위성영상을 기반으로 마른 잎 탐지를 수행하였다. NDVI를 이용하여 마른 잎의 1차 경계 값을 산출하고, 건강한 잎과의 분광특성 차이 및 NDWI를 이용하여 마른 잎의 2차 경계 값을 산출하였다. 본 연구의 마른 잎 탐지 알고리즘의 정확도 검증을 위해 POD, FAR 값을 이용하였으며, 검증 결과 POD는 98.619, FAR은 1.203으로 높은 정확성을 보였다.

다중시기 Sentinel-2 위성영상과 일강수량 자료를 활용한 집중호우 전후의 토지피복별 원격탐사지수 변화 분석 (Analysis on the Changes of Remote Sensing Indices on Each Land Cover Before and After Heavy Rainfall Using Multi-temporal Sentinel-2 Satellite Imagery and Daily Precipitation Data)

  • 김경섭;문갑수;정윤재
    • 한국지리정보학회지
    • /
    • 제23권2호
    • /
    • pp.70-82
    • /
    • 2020
  • 최근 도시홍수에 의해 많은 피해가 발생하고 있으며, 단시간에 국지적으로 발생하는 집중호우가 1차 원인으로 꼽히고 있다. 도시홍수의 피해는 도시지역 내 물수지의 변화로 규명하고 있으며, 이를 간접적으로 파악하기 위해 일강수량 자료와 다중시기 Sentinel-2 위성영상을 활용해 집중호우 전후의 토지피복별 원격탐사지수 변화를 분석하였다. 일강수량 자료를 바탕으로 호우주의보 및 경보의 사례를 선정하였고, 해당 기간의 Sentinel-2 위성영상을 취득해 이를 기상청 서울관측소 기준 반경 1,000m 범위의 정규식생지수(NDVI), 정규수분지수(NDWI) 및 정규습윤지수(NDMI) 영상을 토지피복별로 제작하여 통계적 변화를 비교하였다. 각 영상을 구성하고 있는 픽셀의 최댓값, 최솟값, 평균 및 그 증감을 분석한 결과, 집중호우 전후 도시지역 원격탐사지수에 유의미한 변화가 발생한 것으로 보기는 힘들다고 판단하였다.

GIS와 원격탐사자료를 이용한 산림전용지 추출 및 정확도 평가 (Extraction and Accuracy Assessment of Deforestation Area using GIS and Remotely Sensed Data)

  • 이기행;이정수
    • 한국산림과학회지
    • /
    • 제101권3호
    • /
    • pp.365-373
    • /
    • 2012
  • 본 연구는 원주시를 대상으로 중해상도 위성영상을 이용하여 산림전용지의 추출 및 정확도 분석을 목적으로 수행하였다. 2000년부터 2008년까지 산림에서 비산림으로 전용된 면적은 467 ha로 연평균 약 52 ha가 전용되었으며, 전용형태는 주거지로의 전용이 약 72% 차지하였으며, 전체발생면적의 약 97%가 2 ha 미만이였다. 또한, 산림전용지는 도로로부터 500 m이내와 산림 비산림 경계로부터 100 m이내 지역에서 약 79%가 발생하였다. 한편, 행정정보상의 산림전용지(GIS전용지)와 위성영상에 의하여 구축된 지수별(NDVI,NBR,NDWI) 산림전용지(RS전용지)와 비교한 결과, 추출정확도는 $3{\times}3$ 필터링을 적용한 NDVI의 평균$({\mu})$-표준편차$({\sigma}){\times}1.5$ 구간에서 일치율 35.47%, K-지수 0.20로 가장 안정적인 정확도를 나타냈다. 정확도 오차의 원인으로는 산림전용지의 토지이용변화와 토지피복변화의 불일치로서, 행정정보상의 산림전용지의 실제 토지피복변화율은 약 32%에 지나지 않았다. 또한, RS전용지에 의하여 산림경영활동지역의 약 7.52%가 산림전용지로 오류 추출되었다. 토지이용 및 토지피복상 변화된 산림전용지(GIS전용지2)를 대상으로 지수별 RS전용지와 정확도를 비교한 결과, $3{\times}3$ 필터링을 적용한 NDVI의 ${\mu}-{\sigma}{\times}2$ 구간에서 일치율 61.23%, K-지수 0.23으로 향상되었다.

블록 기반의 영상 분할과 수계 경계의 확장을 이용한 수계 검출 (Water body extraction using block-based image partitioning and extension of water body boundaries)

  • 예철수
    • 대한원격탐사학회지
    • /
    • 제32권5호
    • /
    • pp.471-482
    • /
    • 2016
  • 본 논문에서는 수계 영역의 감독 분류 성능을 향상시키기 위하여 블록 기반의 영상 분할과 수계 경계의 확장을 이용하는 수계 검출 방법을 제안한다. 초기 수계 영역을 추출하기 위하여 수계 훈련 지역의 Normalized Difference Water Index (NDWI) 및 Near Infrared (NIR) 밴드 영상의 분광 정보를 이용하여 Mahalanobis 거리 영상을 생성한다. Mahalanobis 거리 영상에 포함된 잡음 성분의 영향을 감소시키기 위해서 인접한 화소의 연결 강도에 의해 확산 계수가 제어되는 평균 곡률 확산을 적용한 후에 초기 수계 영역을 추출한다. 추출된 수계 영상을 같은 크기의 블록으로 분할한 후에 수계 경계에 속하는 수계 영역의 정보를 이용하여 수계 영역을 갱신한다. 수계 경계에 속하는 수계 영역과 수계 훈련 지역 사이의 통계적인 거리가 임계값 이하이면, 수계 영역 갱신을 반복적으로 수행한다. 제안한 알고리즘을 KOMPSAT-2 영상에 적용한 결과 블록 크기가 $11{\times}11$에서 $19{\times}19$사이인 경우에 overall accuracy는 99.47%에서 99.53%, Kappa coefficient는 95.07%에서 95.80%의 분류 정확도를 보였다.

토양수분 위성자료의 공간상세화에 관한 연구 (A Study on Spatial Downscaling of Satellite-based Soil Moisture Data)

  • 신대윤;이양원;박문성
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.414-414
    • /
    • 2017
  • 토양수분은 지면환경에서 일어나는 수문 및 에너지 순환을 이해하는 데 있어 중요한 기상인자이다. 토양수분 현장관측은 땅속에 매설된 센서에 의해 상당히 정확하게 이루어지만, 관측점 수가 충분치 않아 공간적 연속성을 확보하지 못하는 어려움이 존재한다. 이에 광역적 및 연속적 관측이 가능한 마이크로파 위성센서가 토양수분 정보 획득을 위한 보조수단으로서 그 중요성이 부각되고 있다. 마이크로파 위성센서는 구름 등 기상조건의 제약을 받지 않으며, 1978년 이래 현재까지 여러 위성에 의해 25 km 및 10 km 해상도의 전지구 토양수분자료가 생산되어 왔다. 마이크로파 센서를 이용한 토양수분자료는 동일지점에 대하여 하루 2회 정도 산출되므로 적절한 시간분해능을 가지지만, 공간해상도가 최고 10 km로서 지역규모의 수문분석에 적용하기에는 충분치 않다. 이러한 토양수분자료의 공간해상도 문제 해결을 위하여 다양한 지면환경요소를 활용한 통계적 다운스케일링이 대안으로 제시되었다. 최근의 선행연구들은 대부분 방정식을 이용한 결합모형을 통해 통계적 다운스케일링을 수행하였는데, 회귀식과 같은 선형결합뿐 아니라 신경망이나 기계학습 등의 비선형결합에서도, 불가피하게 발생할 수밖에 없는 잔차(residual)로 인하여 다운스케일링 전후의 공간분포 패턴이 달라져버리는 문제를 안고 있었다. 회귀분석에 잔차의 공간내삽을 결합시킨 회귀크리깅(regression kriging)은 잔차보정을 통해 이러한 문제를 해결함으로써 다운스케일링 전후의 공간분포 일관성을 보장하는 기법이다. 이 연구에서는 회귀크리깅을 이용하여 일자별 AMSR2(Advanced Microwave Scanning Radiometer 2) 토양수분 자료를 10 km에서 1 km 해상도로 다운스케일링하고, 다운스케일링 전후의 자료패턴 일관성을 평가한다. 지면온도(LST), 지면온도상승률(RR), 식생온도건조지수(TVDI)는 일자별로 DB를 구축하였고, 식생지수(NDVI), 수분지수(NDWI), 지면알베도(SA)는 8일 간격으로 DB를 구축하였다. 이러한 8일 간격의 자료를 일자별로 변환하기 위하여 큐빅스플라인(cubic spline)을 이용하여 시계열내삽을 수행하였다. 또한 상이한 공간해상도의 자료는 최근린법을 이용하여 다운스케일링 목표해상도인 1 km에 맞도록 변환하였다. 우선 저해상도 스케일에서 추정치를 산출하기 위해서는 저해상도 픽셀별로 이에 해당하는 복수의 고해상도 픽셀을 평균화하여 대응시켜야 하며, 이를 통해 6개의 설명변수(LST, RR, TVDI, NDVI, NDWI, SA)와 AMSR2 토양수분을 반응변수로 하는 다중회귀식을 도출하였다. 이식을 고해상도 스케일의 설명변수들에 적용하면 고해상도 토양수분 추정치가 산출되는데, 이때 추정치와 원자료의 차이에 해당하는 잔차에 대한 보정이 필요하다. 저해상도 스케일로 존재하는 잔차를 크리깅 공간내삽을 통해 고해상도로 변환한 후 이를 고해상도 추정치에 부가해주는 방식으로 잔차보정이 이루어짐으로써, 다운스케일링 전후의 자료패턴 일관성이 유지되는(r>0.95) 공간상세화된 토양수분 자료를 생산할 수 있다.

  • PDF

Sentinel-2 위성영상과 SRTM DEM을 활용한 연안습지 탐지: 서해안 곰소만을 사례로 (Detection of the Coastal Wetlands Using the Sentinel-2 Satellite Image and the SRTM DEM Acquired in Gomsoman Bay, West Coasts of South Korea)

  • 정윤재;김경섭;박인선
    • 한국지리정보학회지
    • /
    • 제24권2호
    • /
    • pp.52-63
    • /
    • 2021
  • 기존 연구에서는 연안습지를 탐지하기 위해 위성/항공 영상의 다중분광 밴드로부터 산출한 식생지수 또는 토지피복도를 활용하였으나, 단일 센서만을 활용할 경우 토지피복정보와 지형정보를 동시에 고려하는 것에 한계가 있어 높은 정확도의 연안습지 탐지 및 대규모 연안습지 관리 업무 수행에 많은 지장을 초래하였다. 본 연구에서는 우리나라 서해안 곰소만 지역을 촬영한 Sentinel-2 위성영상의 다중분광 밴드와 디지털 지형 모델인 SRTM(Shuttle Radar Topography Mission) DEM(Digital Elevation Model)을 사용하여 서해안 곰소만의 대규모 연안습지를 다음의 과정을 통해 탐지하였다. 우선 Sentinel-2 위성영상의 Green 및 근적외선 밴드를 활용하여 정규수분지수 영상을 제작하였다. 그리고 정규수분지수 영상에서 픽셀의 밝기값 0.2를 임계치로 설정하여 물과 육지를 구분하는 이진화 영상을 제작하였으며, SRTM DEM에서 픽셀의 밝기값 0을 임계치로 설정하여 해수면 아래와 해수면 위를 구분하는 이진화 영상을 제작하였다. 최종적으로는 두 장의 이진화 영상에 중첩 분석을 적용하여 이진화 영상 기반 연안습지 지도를 제작하였다. 본 연구에서 제안한 기술을 활용하여 제작한 이진화 영상 기반 연안습지 지도의 정확도는 94%로서 매우 높은 결과를 보여주었으며, 연안습지가 아닌 내륙습지, 산지습지 등은 탐지되지 않아서 연안습지 관리 업무에 매우 효과적으로 활용될 수 있음을 확인하였다.

산불위험지수 지역최적화를 통한 2022년 북한산불 사례분석 (Regional Optimization of Forest Fire Danger Index (FFDI) and its Application to 2022 North Korea Wildfires)

  • 윤유정;김서연;최소연;박강현;강종구;김근아;권춘근;서경원;이양원
    • 대한원격탐사학회지
    • /
    • 제38권6_3호
    • /
    • pp.1847-1859
    • /
    • 2022
  • 북한에서 발생한 산불은 비무장지대 등으로 남하하는 경우 우리나라에 직·간접적인 영향을 줄 수 있다. 이에 본 연구는 정보 접근불능 지역인 북한의 산불위험정보를 획득하기 위하여 Local Data Assimilation and Prediction System (LDAPS) 기상자료 기반의 지역 최적화된 산불위험지수 Forest Fire Danger Index (FFDI)를 산출하고, 2022년 4월 북한 고성군과 철원군의 산불 사례에 적용하였다. 그 결과 발화일 당시 FFDI가 각각 위험등급 Extreme과 Severe 구간에 해당하여 적합성을 확인하였다. 또한 산불 발생 전후의 위험도지도와 토양수분지도를 정성적으로 비교한 결과 상호 관계성을 파악하였으며, 향후 토양수분, 표준화강수지수(Standardized Precipitation Index, SPI), 식생수분지수(Normalized Difference Water Index, NDWI) 등을 결합하는 방식으로 산불발생위험지수의 개선이 필요하다.