• Title/Summary/Keyword: NDVI

Search Result 765, Processing Time 0.04 seconds

Comparison of High Resolution Image by Ortho Rectification Accuracy and Correlation Each Band (고해상도 영상의 정사보정 정확도 검증 및 밴드별 상관성 비교연구)

  • Jin, Cheong-Gil;Park, So-Young;Kim, Hyung-Seok;Chun, Yong-Sik;Choi, Chul-Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.35-45
    • /
    • 2010
  • The objective of this study is to verify the positional accuracy by performing the orthometric corrections on the high resolution satellite images and to analyze the band correlation between the high resolution images corrected with orthometric correction. The objectives also included an analysis on the correlation of NDVI. For the orthometric correction of images from KOMPSAT2 and IKONOS, systematic errors were removed in use of RPC data, and non-planar distortions were corrected with GPS surveying data. Also, by preempting the image points at the same positions within ortho images, a comparison was performed on positional accuracies between image points of each image and GPS surveying points. The comparison was also made on the positional accuracies of image points. between the images. For correlation of band and correlation of NDVI, the descriptive statistics of DN values were acquired for respective bands by adding the Quickbird images and Aerial Photographs undergone through orthometric correction at the time of purchase. As result, from a comparison on positional accuracies of Orthoimages from KOMPSAT2 and Ortho Images of IKONOS was made. From the comparison the distance between the image points within each image and GPS surveying points was identified as 3.41m for KOMPSAT2 and as 1.45m for IKONOS, presenting a difference of 1.96m. Whereas, RMSE between image points was identified as 1.88m. The level of correlation was measured by using Quickbird, KOMPSAT2, IKONOS and Aerial Photographs between inter-image bands and NDVI, showing that there were high levels of correlation between Quickbird and IKONOS identified from all bands as well as from NDVI, except a high level of correlation that was identified between the Aerial Photographs and KOMPSAT2 from Band 2. Low levels of correlation were also identified between Quickbird and Aerial Photographs from Band 1. and between KOMPSAT2 and IKONOS from Band 2 and Band 4, whereas, KOMPSAT2 showed low correlations with Aerial Photographs from Band 3. For NDVI, KOMPSAT2 showed low level of correlations with both of QuickBird and IKONOS.

Gap-Filling of Sentinel-2 NDVI Using Sentinel-1 Radar Vegetation Indices and AutoML (Sentinel-1 레이더 식생지수와 AutoML을 이용한 Sentinel-2 NDVI 결측화소 복원)

  • Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1341-1352
    • /
    • 2023
  • The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.

Comparison of NDVI in Rice Paddy according to the Resolution of Optical Satellite Images (광학위성영상의 해상도에 따른 논지역의 정규식생지수 비교)

  • Jeong Eun;Sun-Hwa Kim;Jee-Eun Min
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1321-1330
    • /
    • 2023
  • Normalized Difference Vegetation Index (NDVI) is the most widely used remote sensing data in the agricultural field and is currently provided by most optical satellites. In particular, as high-resolution optical satellite images become available, the selection of optimal optical satellite images according to agricultural applications has become a very important issue. In this study, we aim to define the most optimal optical satellite image when monitoring NDVI in rice fields in Korea and derive the resolution-related requirements necessary for this. For this purpose, we compared and analyzed the spatial distribution and time series patterns of the Dangjin rice paddy in Korea from 2019 to 2022 using NDVI images from MOD13, Landsat-8, Sentinel-2A/B, and PlanetScope satellites, which are widely used around the world. Each data is provided with a spatial resolution of 3 m to 250 m and various periods, and the area of the spectral band used to calculate NDVI also has slight differences. As a result of the analysis, Landsat-8 showed the lowest NDVI value and had very low spatial variation. In comparison, the MOD13 NDVI image showed similar spatial distribution and time series patterns as the PlanetScope data but was affected by the area surrounding the rice field due to low spatial resolution. Sentinel-2A/B showed relatively low NDVI values due to the wide near-infrared band area, and this feature was especially noticeable in the early stages of growth. PlanetScope's NDVI provides detailed spatial variation and stable time series patterns, but considering its high purchase price, it is considered to be more useful in small field areas than in spatially uniform rice paddy. Accordingly, for rice field areas, 250 m MOD13 NDVI or 10 m Sentinel-2A/B are considered to be the most efficient, but high-resolution satellite images can be used to estimate detailed physical quantities of individual crops.

Estimating Corn and Soybean Yield Using MODIS NDVI and Meteorological Data in Illinois and Iowa, USA (MODIS NDVI와 기상자료를 이용한 미국 일리노이, 아이오와주 옥수수, 콩 수량 추정)

  • Lee, Kyung-Do;Na, Sang-Il;Hong, Suk-Young;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.741-750
    • /
    • 2017
  • The objective of this study was to estimate corn and soybean yield in Illinois and Iowa in USA using satellite and meteorological data. MODIS products for NDVI were downloaded from a NASA website. Each layer was processed to convert projection and extract layers for NDVI. Relations of NDVI from 2002 to 2012 with corn and soybean yield were investigated to find informative days for rice yield estimation. Weather data for the county of study state duration from 2002 to 2012 to correlate crop yield. Multiple regression models based on MODIS NDVI and rainfall were made to estimate corn and soybean yields in study site. Corn yields estimated for 2013 were $10.17ton\;ha^{-1}$ in Illinois, $10.21ton\;ha^{-1}$ in Iowa and soybean yields estimated were $3.11ton\;ha^{-1}$ in Illinois, $2.58ton\;ha^{-1}$ in Iowa, respectively. Corn and Soybean yield distributions in 2013 were mapped to show spatial variability of crop yields of the Illinois and Iowa state.

Diurnal Change of Reflectance and Vegetation Index from UAV Image in Clear Day Condition (청천일 무인기 영상의 반사율 및 식생지수 일주기 변화)

  • Lee, Kyung-do;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Ahn, Ho-yong
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.735-747
    • /
    • 2020
  • Recent advanced UAV (Unmanned Aerial Vehicle) technology supply new opportunities for estimating crop condition using high resolution imagery. We analyzed the diurnal change of reflectance and NDVI (Normalized Difference Vegetation Index) in UAV imagery for crop monitoring in clear day condition. Multi-spectral images were obtained from a 5-band multi-spectral camera mounted on rotary wing UAV. Reflectance were derived by the direct method using down-welling irradiance measurement. Reflectance using UAV imagery on calibration tarp, concrete and crop experimental sites did not show stable by time and daily reproducible values. But the CV (Coefficient of Variation) of diurnal NDVI on crop experimental sites was less than 5%. As a result of comparing NDVI at the similar time for two day, the daily mean average ratio of error showed a difference of 0.62 to 3.97%. Therefore, it is considered that NDVI using UAV imagery can be used for time series crop monitoring.

Effect of the Application of Temporal Mask Map on the Relationship between NDVI and Rice Yield (시계열 마스크 맵이 논벼 NDVI와 단수와의 관계에 미치는 영향)

  • Na, Sang-il;Ahn, Ho-yong;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.725-733
    • /
    • 2020
  • The objectives of this study were (1) to develop a temporal mask map using MCD12Q1 data, and (2) to extract the annual variations in paddy, (3) to investigate the correlation analysis between MYD13Q1 NDVI and rice yield, and (4) to review its applicability. For these purposes, the temporal mask map was created using annual MCD12Q1 PFT data from 2002 to 2019, and compared with the fixed mask map. As a result, it found that the temporal mask map well reflected the variations of the paddy area. In addition, the correlation coefficient between NDVI and rice yield was also high significant as compared to the fixed mask map. Therefore, the temporal mask map will be useful for NDVI extraction, crop monitoring, and estimation of rice yield.

Urbanization and Urban Heat Island Analysis Using LANDSAT Imagery: Sejong City As a Case Study (LANDSAT 영상을 이용한 세종특별자치시의 도시화와 열섬현상 분석)

  • Kim, Mi-Kyeong;Kim, Sang-Pil;Kim, Nam-Hoon;Sohn, Hong-Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.1033-1041
    • /
    • 2014
  • Rapid urbanization of Korea was an unprecedented example in the world and urban population increased significantly. As a result, unbalanced distribution of population is serious problem in Korea because approximately 50% of the population is concentrated in the capital area that is 10% of nation's territory, thereby occurring various urban problems including UHI. Hence, Sejong Special Autonomous City was inaugurated officially on 2 July 2012 in order to decentralize population of capital area and induce more balanced regional development. The Sejong City has been changed drastically over a period of years as developed practically since the late 2000's and is expected to have new problems of urbanization. The land cover change due to urbanization is the main cause of UHI that urban area is significantly warmer than its surrounding areas and UHI is not only affecting urban climate change but also natural environment. So the purpose of this research is to analyze level of urbanization and UHI effect and to provide the correlation analysis between Land Surface Temperature and spectral indices. To achieve this, satellite imagery from LANDSAT were used. NDVI, NDBI, and UI were calculated using red, near-infrared, mid-infrared ($0.63{\mu}m-1.75{\mu}m$) images and LST was retrieved utilizing thermal infrared ($10.4{\mu}m-12.5{\mu}m$) image. Based on each index and LST, Changes of NDVI, UI and UHI through TVI were analyzed in Sejong City. UHI effect increased around newly constructed multi-functional administrative city, the correlation between LST and NDVI was negative and UI was strong positive.

A comparative study for reconstructing a high-quality NDVI time series data derived from MODIS surface reflectance (MODIS 지표 분광반사도 자료를 이용한 고품질 NDVI 시계열 자료 생성의 기법 비교 연구)

  • Lee, Jihye;Kang, Sinkyu;Jang, Keunchang;Hong, Suk Young
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.149-160
    • /
    • 2015
  • A comparative study was conducted for alternative consecutive procedures of detection of cloud-contaminated pixels and gap-filling and smoothing of time-series data to produce high-quality gapless satellite vegetation index (i.e. Normalized Difference Vegetation Index, NDVI). Performances of five alternative methods for detecting cloud contaminations were tested with ground-observed cloudiness data. The data gap was filled with a simple linear interpolation and then, it was applied two alternative smoothing methods (i.e. Savitzky-Golay and Wavelet transform). Moderate resolution imaging spectroradiometer (MODIS) data were used in this study. Among the alternative cloud detection methods, a criterion of MODIS Band 3 reflectance over 10% showed best accuracy with an agreement rate of 85%, which was followed by criteria of MODIS Quality assessment (82%) and Band 3 reflectance over 20% (81%), respectively. In smoothing process, the Savitzky-Golay filter was better performed to retain original NDVI patterns than the wavelet transform. This study demonstrated an operational framework of gapdetection, filling, and smoothing to produce high-quality satellite vegetation index.

Evaluation of Feed Value of IRG in Middle Region Using UAV

  • Na, Sang-Il;Kim, Young-Jin;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.391-400
    • /
    • 2017
  • Italian ryegrass (IRG) is one of the fastest growing grasses available to farmers. It offers rapid establishment and starts growing early in the following spring and has fast regrowth after defoliation. So, IRG can be utilized as the dominant/single species of grass used in a farming system, or to play a role as a large producing pasture and sacrificial paddock. The objective of this study was to develop the use of unmanned aerial vehicle (UAV) for the evaluation of feed value of IRG. For this study, UAV imagery was taken on the Nonsan regions two times during the IRG growing season. We analyzed the relationships between $NDVI_{UAV}$ and feed value parameters such as fresh matter yield, dry matter yield, acid detergent fiber (ADF), neutral detergent fiber (NDF), total digestible nutrient (TDN) and crude protein at the season of harvest. Correlation analysis between $NDVI_{UAV}$ and feed value parameters of IRG revealed that $NDVI_{UAV}$ correlated well with crude protein (r = 0.745), and fresh matter yield (r = 0.655). According to the relationship, the variation of $NDVI_{UAV}$ was significant to interpret feed value parameters of IRG. Eight different regression models such as Linear, Logarithmic, Inverse, Quadratic, Cubic, Power, S, and Exponential model were used to estimate IRG feed value parameters. The S and exponential model provided more accurate results to predict fresh matter yield and crude protein than other models based on coefficient of determination, p- and F-value. The spatial distribution map of feed values in IRG plot was in strong agreement with the field measurements in terms of geographical variation and relative numerical values when $NDVI_{UAV}$ was applied to regression equation. These lead to the result that the characteristics of variations in feed value of IRG according to $NDVI_{UAV}$ were well reflected in the model.

Detrending Crop Yield Data for Improving MODIS NDVI and Meteorological Data Based Rice Yield Estimation Model (벼 수량 자료의 추세분석을 통한 MODIS NDVI 및 기상자료 기반의 벼 수량 추정 모형 개선)

  • Na, Sang-il;Hong, Suk-young;Ahn, Ho-yong;Park, Chan-won;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.199-209
    • /
    • 2021
  • By removing the increasing trend that long-term time series average of rice yield due to technological advancement of rice variety and cultivation management, we tried to improve the rice yield estimation model which developed earlier using MODIS NDVI and meteorological data. A multiple linear regression analysis was carried out by using the NDVI derived from MYD13Q1 and weather data from 2002 to 2019. The model was improved by analyzing the increasing trend of rime-series rice yield and removing it. After detrending, the accuracy of the model was evaluated through the correlation analysis between the estimated rice yield and the yield statistics using the improved model. It was found that the rice yield predicted by the improved model from which the trend was removed showed good agreement with the annual change of yield statistics. Compared with the model before the trend removal, the correlation coefficient and the coefficient of determination were also higher. It was indicated that the trend removal method effectively corrects the rice yield estimation model.