Recently Unmanned Aerial Vehicle (UAV) technology offers new opportunities for assessing crop growth condition using UAV imagery. The objective of this study was to select optimal vegetation indices and regression model for estimating of rice growth using UAV images. This study was conducted using a fixed-wing UAV (Model : Ebee) with Cannon S110 and Cannon IXUS camera during farming season in 2016 on the experiment field of National Institute of Crop Science. Before heading stage of rice, there were strong relationships between rice growth parameters (plant height, dry weight and LAI (Leaf Area Index)) and NDVI (Normalized Difference Vegetation Index) using natural exponential function ($R{\geq}0.97$). After heading stage, there were strong relationships between rice dry weight and NDVI, gNDVI (green NDVI), RVI (Ratio Vegetation Index), CI-G (Chlorophyll Index-Green) using quadratic function ($R{\leq}-0.98$). There were no apparent relationships between rice growth parameters and vegetation indices using only Red-Green-Blue band images.
The vegetation index is a crucial parameter in many biophysical studies of vegetation, and is also a valuable content in ecological processes researching. The OVIs (Optical Vegetation Index) that of using multispectral and hyperspectral data have been widely investigated in the literature, while the RVI (Radar Vegetation Index) that of considering volume scattering measurement has been paid relatively little attention. Also, there was only some efforts have been put to fuse the OVI with the RVI as an integrated vegetation index. To address this issue, this paper presents a novel FVI (Fusion Vegetation Index) that uses multispectral and full-PolSAR (Polarimetric Synthetic Aperture Radar) data. By fusing a NDVI (Normalized Difference Vegetation Index) of RapidEye and an RVI of C-band Radarsat-2, we demonstrated that the proposed FVI has higher separability in different vegetation types than only with OVI and RVI. Also, the experimental results show that the proposed index not only has information on the vegetation greenness of the NDVI, but also has information on the canopy structure of the RVI. Based on this preliminary result, since the vegetation monitoring is more detailed, it could be possible in various application fields; this synergistic FVI will be further developed in the future.
이상기상으로 인해 노지 작물이 스트레스 상황에 노출되는 빈도가 증가하고 있다. 우리나라에서도 대표적인 벼 재배지역에서 대규모의 병해가 발생하는 사례가 나타났으며, 특정 시기에 대규모 필지에서 발생하는 피해를 현장방문으로 조사하는 것은 한계가 있다. 위성 기반의 원격탐사 기법은 시군 영역을 대상으로 작물을 모니터링하기에 유용하나 작물의 생육이상에 따른 민감도 평가가 선행되어야 한다. 본 연구에서는 벼 병해 발생 지역에서 서로 다른 공간해상도를 가지는 위성 기반의 정규화식생지수(normalized difference vegetation index, NDVI)를 드론 영상을 이용하여 평가하였다. 10 m와 30 m의 공간해상도를 가지는 Sentinel-2, Landsat-8 위성 영상을 평가하였으며, 드론 영상은 약 8-10 cm의 공간해상도를 가졌다. 위성 영상에 맞춰 리샘플링(resampling)된 드론 NDVI는 Sentinel-2 NDVI 와 0.867-0.940의 상관관계를 가졌으며, Landsat-8 NDVI와는 0.813-0.934의 상관관계를 가졌다. 센서의 차이, 관측 시점의 차이 등으로 인한 편향(bias) 영향을 최소화하였을 때, Sentinel-2 NDVI는 Landsat-8 NDVI에 비해 드론 NDVI와 0.2-2.8% 더 적은 정규화된 평균 제곱근 오차를 가졌다. 또한, Sentinel-2 NDVI는 드론 NDVI와 병해 피해 정도와 관계없이 일정한 오차를 가졌으나 Landsat-8 NDVI는 병해 피해 정도에 따라 드론 NDVI와 오차 특성이 다르게 나타났다. 농경지 경계에서 오차가 크다는 것을 고려했을 때 공간해상도가 높은 영상을 활용하는 것이 작물 모니터링에 효과적이라고 판단된다.
본 연구는 몽골 Tuul-basin 지역의 토지피복변화 상태와 토지황폐화에 대한 분석을 위해 1990, 2001, 2011년의 녹색식물의 활력도가 가장 높은 여름의 Landsat 위성영상을 활용하였다. 몽골 Tuul-Basin 지역의 시계열 데이터를 이용하여, 정규식생지수(NDVI, normalized difference vegetation index), 토양조절 식생지수(SAVI, soil-adjusted vegetation index), 지표면온도(LST, land surface temperature)를 계산하여 토지피복변화 분석을 하였다. 그 결과 연구지역 전체 지역의 산림 및 녹지는 감소되고, 건조지역, 휴경지는 증가된 것으로 나타났으며, 점진적으로 토지가 황폐화되어 감을 알 수 있었다. 또한 LST와 식생지수의 상관성 분석을 실시한 결과, 높은 상관관계를 나타내었으며, 이는 대상지역의 토지피복변화나 식생의 활력도가 지표면의 온도와 밀접하게 관계가 있다는 것을 알 수 있었다.
본 연구에서는 농업적 가뭄을 시, 공간적으로 파악하기 위하여 Terra의 MODIS 원격탐사 자료를 활용하여 가뭄의 정량적 평가를 실시하였다. 여러 가지 위성영상 중에서 식생 상태의 변화가 관찰되는 MOD13A3 영상을 통하여 NDVI (Normalized Difference Vegetation Index)와 EVI (Enhanced Vegetation Index)를 선정하였으며, 토지정보를 효율적으로 수집할 수 있는 MCD12Q1 영상의 Type1을 통하여 물, 도심지역 등을 제외한 식생부분만을 나타낼 수 있도록 토지피복분류를 하였다. 토지피복분류된 자료를 이용하여 NDVI와 EVI를 중권역별로 산정하여 나타낸 결과 계절적인 성향이 강하게 나타나 이를 보완하고자 EVI의 표준화 지수인 VSIA (Vegetation Stress Index Anomaly)를 우리나라의 극심한 가뭄해인 2001년에 대하여 중권역별로 산정하였다. 또한, 과거 우리나라의 농업가뭄 피해를 조사하였으며, 지상강우관측소의 자료를 통하여 SPI (Standardized Precipitation Index)를 중권역별로 산정하였다. SPI와 위성영상의 표준화 지수인 VSIA를 우리나라의 농업적 가뭄피해 연도와 비교하였으며, VISA의 시공간적 분석을 통해 한반도의 농업적 가뭄을 평가할 수 있는 활용성 및 적용 가능성을 검토하였다.
The role of remote sensing in phenological studies is increasingly regarded as a key in understanding large area seasonal phenomena. This paper describes the application of Moderate Resolution Imaging Spectroradiometer (MODIS) time series data for vegetation classification using seasonal variation patterns. The vegetation seasonal variation phase of Seoul and provinces in Korea was inferred using 8 day composite MODIS NDVI (Normalized Difference Vegetation Index) dataset of 2006. The seasonal vegetation classification approach is performed with reclassification of 4 categories as urban, crop land, broad-leaf and needle-leaf forest area. The BISE (Best Index Slope Extraction) filtering algorithm was applied for a smoothing processing of MODIS NDVI time series data and fuzzy classification method was used for vegetation classification. The overall accuracy of classification was 77.5% and the kappa coefficient was 0.61%, thus suggesting overall high classification accuracy.
This study analyzes time variability of the normalized difference vegetation index (NDVI), the leaf area index (LAI) and surface temperature (Ts) estimated from AVHRR data collected from across the Korean peninsula from 1981 to 1994. In the present study, LAI defined as vegetation density, as a function of NDVI applied for the vegetation types and Ts defined by the split-window formulation of Becker and Li (1990) with emissivity of a function of NDVI, are used. Results of the inter-annual, intra-annual and intra-seasonal variabilities in Korea show: (1) Inter-annual variability of NDVI is generally larger in the southem and eastern parts of the peninsula than in the western part. This large variability results from the significant mean variation. (2) Inter-annual variability of Ts is larger in the areas of smaller NDVI. This result shows that the NDVI play a small role in emissivity. (3) Inter-annual variability of LAI is larger in the regions of higher elevation and urban areas. Changes in LAI are unlikely to be associated with NDVI changes. (4) Changes in NDVI and Ts are likely dominant in July and are relatively small in spring and fall. (5) Urban effect would be obvious on the time-varying properties of NDVI and Ts in Seoul and the northern part of Taejon, where NDVI decreases and Ts increases with a significant magnitude.
The NDVI (Normalized difference vegetation index) is used as indicators of crop growth situation in remote sensing. To measure or validate the NDVI, reliable NDVI sensors have been needed. We tested new fixed-field NDVI sensor, "SRS (Spectral Reflectance Sensor)" developed by Decagon Devices, during Kimchi cabbage growing season at the cultivation area located in Gochang, Gangneung and Taebaek in Korea from 2014 to 2015. The diurnal variation of NDVI measured by SRS (SRS NDVI) showed a slight ${\cap}$-profile shape and was affected by water on the sensor surface. This means that SRS NDVI around noontime is resonable, except rainy day. Comparisons were made between the SRS NDVI and NDVI of used widely mobile sensor (Cropcircle NDVI). The comparisons indicate that SRS NDVI are close to Cropcircle NDVI (R=0.99). SRS NDVI time series displayed change of the plant height and leaf width of Kimchi cabbage. An obvious exponential relationship is found between SRS NDVI and the plant height ($R^2{\geq}0.92$) and leaf width ($R^2{\geq}0.92$) of Kimchi cabbage. Thus, SRS NDVI will be used as indicator of crop growth situation and a very powerful tool for evaluation of remote sensing NDVI estimates and associated corrections.
본 논문은 Landsat TM 영상을 활용하여 교목연령 추정과 이와 관련이 있는 영상의 밴드값과 식생지수에 대한 상관관계 연구를 수행하였다. 기본적으로 본 연구에서는 취득시기가 다른 Landsat TM 영상 (1990, 1994, 1998년)과 Shuttle Radar Topography Mission (SRTM)과 National Elevation Dataset(NED) 영상의 차분영상이 사용되었으며 밴드 4, 5, 7 영상, 태슬모자형 변환을 통한 녹색식생지수, 토양수분지수 영상, 정규식생지수 (NDVI), 적외선지수 (II), 식생상태지수 (VCI), 토양보정식생지수 (SAVI) 영상은 Landsat TM 영상에서 추출되었다. 각각의 영상에서 추출된 값인 총 1992개 자료를 회귀분석을 통하여 분석하였고 연구 결과 교목연령을 추정하는데 있어서 가장 높은 결정계수($R^2$)값을 보이는 요소로는 태슬모자형 변환 토양수분지수. 적외선지수 (II), 식생상태지수 (VCI) 영상이며 이들 값이 교목연령을 추정하는데 가장 많은 영향이 있음을 알 수 있다.
NDVI (Normalized Difference Vegetation Index) plays an important role in surface land cover classification and LST (Land Surface Temperature Extraction). Its characteristics do not full carry the information of the surface cover typically in urban areas even though it is widely used in analyses in urban areas as well as in vegetation. However, abnormal NDVI values are frequently found in urban areas. We, therefore, examined NDVI values on whether NDVI is appropriate for LST and whether there are considerations in NDVI analysis typically in urban areas because NDVI is strongly related to the surface emissivity calculation. For the study, we observed the influence of the surface settings (i.e., geometric shape and color) on NDVI values in urban area and transition features between three land cover types, vegetation, urban materials, and water. Interestingly, there were many abnormal NDVI values systematically derived by the surface settings and they might influence on NDVI and eventually LST. Also, there were distinguishable transitions based on the mixture of three surface materials. A transition scenario was described that there are three transition types of mixture (urban material-vegetation, urban material-water, and vegetation-water) based on the relationship of NDVI and LST even though they are widely distributed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.