• Title/Summary/Keyword: NDR1

Search Result 34, Processing Time 0.024 seconds

A Study on the Negative Differential Resistance Properties of Self-Assembly Organic Thin Film with Nitro Group (니트로기를 가진 자기조립된 유기 초박막의 부성미분저항 특성에 관한 연구)

  • Kim, Seung-Un;Son, Jung-Ho;Kim, Byoung-Sang;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.811-813
    • /
    • 2003
  • We investigated the electrical properties of self-assembled (4,4'-Di(ethynylphenyl)-2'-nitro-1-thioacetylbenzene), which has been well known as a conducting molecule having possible application to molecular level negative differential resistance(NDR)[1]. Generally, the phenomenon of NDR can be characterized by the decreasing current with the increasing voltage[2]. To deposit the SAM layer onto gold electrode, we transfer the prefabricated nanopores into a 1mM self-assembly molecules in THF solution. Au(111) substrates were prepared by ion beam sputtering method of gold onto the silicon wafer. As a result, we measured the voltage-current properties and confirmed the negative differential resistance properties of self-assembled organic thin film and measured, using Scanning Tunneling Microscopy(STM).

  • PDF

Fabrication of GaAs Gunn diodes and Characterization of Negative Differential Resistance (GaAs Gunn 다이오드 소자의 제작과 부성미분저항)

  • Kim, Mi-Ra;Lee, Seong-Dae;Chae, Yeon-Sik;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.1-8
    • /
    • 2007
  • The DC characteristics of GaAs Gunn diode are investigated as a preliminary study on the planar grade gap injector GaAs Gunn diode which is the transferred electron device with high output power and dc-rf conversion efficiency. The Gunn devices we fabricated were confirmed to have the DC characteristics of negative differential resistance(NDR). We discussed the nature of the NDR effect, including the electron intervalley transfer; the NDR effect was examined for six different cathode radii.

Isolation and Identification of Antimicrobial Compound from Mokdan Bark (Paeonia suffruticosa ANDR) (목단피로부터 식품부패 미생물에 대한 항균성 물질의 분리 및 동정)

  • 황재선;한영실
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.1059-1065
    • /
    • 2003
  • Antimicrobial activity of Mokdan bark (Paeonia suffruticosa $A_{NDR}$) was investigated. Methanol extract of dried Mokdan was fractionated to hexane, chloroform, ethylacetate, butanol and aqueous fraction. Ethylacetate fraction among these fractions showed the highest inhibitory effect on the microorganisms such as L. monocytogenes, and E. coli at 500 $\mu\textrm{g}$/disc. Ethylacetate fraction was further fractionated into 3 fractions by silica gel column and thin layer chromatography (TLC). The results showed that ethylacetate fractions No. 1 and 2 had the highest antimicrobial activity. They were mixed again, reseparated, and 3 fractions were obtained. Among them, No. 1 had the highest inhibitory effect on the microorganisms, No. 1 fraction was identified as isobutyl isopentanoate by HPLC, and GC-MS.

Study on the Mophology Observation and Electrical Properties of Dipyridinium Organic Monolayer Using STM (STM을 이용한 Dipyridinium 유기 단분자막의 모폴로지 관찰 및 전기적 특성 연구)

  • Lee Nam-Suk;Shin Hoon-Kyu;Kwon Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.2
    • /
    • pp.51-54
    • /
    • 2005
  • In this work, the attempt has been made to investigate the morphology of self-assembled dipyridinium dithioacetate on Au(111) substrate by Scanning Tunneling Microscopy(STM). Also, we measured electrical properties(I-V) using Scanning Tunneling Spectroscopy(STS). Sample used in this experiment is dipyridinium dithioacetate, which contains thiol functional group, this structure that can be self-assembled easily to Au(111) substrate. The self-assembly procedure was used for two different concentrations, 0.5 mM/ml and 1 mM/ml. Dilute density of sample by 0.5 mM/ml, 1 mM/ml and observed dipyridinium dithioacetate's image by STM after self-assembled on Au(111) substrate. The structure of STM tip-SAMs-Au(111) substrate has been used measurement for electrical properties(I-V) using STS. The current-voltage(I-V) measurement result, observed negative differential resistance(NDR) properties.

Fabrication of Organic Thin Film by Using Self-Assembly and Negative Difference Resistance Research (자기조립법을 이용한 유기박막의 소자 제작과 부성저항특성 연구)

  • Son, Jung-Ho;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1572-1574
    • /
    • 2002
  • In this paper, we discuss the electrical properties of self-assembled (2'-amino-4,4-di(ethynylp henyl)-5'-nitro-1-(thioacetyl)benzene), which has been well known as a conducting molecule having possible application to molecular level NDR device. The phenomenon of negative differential resi(NDR) is characterized by decreasing current th a junction at increasing voltage, also fabricatio MIM-type molecular electronic device and the Molecular Level Using Scanning Tunneling Microscopy.

  • PDF

Resonance tunneling phenomena by periodic potential in type-II superconductor

  • Lee, Yeong Seon;Kang, Byeongwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • We calculated the resonance tunneling energy band in the BCS gap for Type-II superconductor in which periodic potential is generated by external magnetic flux. In this model, penetrating magnetic flux was assumed to be in a fixed lattice state which is not moving by an external force. We observed the existence of two subbands when we used the same parameters as for the $Nd_{1.85}Ce_{0.15}CuO_X$ thin film experiment. The voltages at which the regions of negative differential resistivity (NDR) started after the resonant tunneling ended were in a good agreement with the experimental data in the field region of 1 T - 2.2 T, but not in the high field regions. Discrepancy occurred in the high field region is considered to be caused by that the potential barrier could not be maintained because the current induced by resonant tunneling exceeds the superconducting critical current. In order to have better agreement in the low field region, more concrete designing of the potential rather than a simple square well used in the calculation might be needed. Based on this result, we can predict an occurrence of the electromagnetic radiation of as much difference of energy caused by the 2nd order resonant tunneling in which electrons transit from the 2nd band to the 1st band in the potential wells.

A Study on the Current-Voltage Characteristics of Self-Assembled Organic Molecules by using STM

  • Kim Seung-Un;Shin Hoon-Kyu;Kwon Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.115-118
    • /
    • 2005
  • Currently, molecular devices are reported utilizing active self-assembled monolayers (SAMs) containing the nitro group as the active component, which has active redox centers [1]. SAMs are ordered molecular structures formed by the adsorption of an active surfactant on a solid surface. The molecules will be spontaneously oriented toward the substrate surface and form an energetically favorable ordered layer. During this process, the surface-active head group of the molecule chemically reacts with and chemisorbs onto the substrate In this paper, the electrical properties of the 4'4- di(ethynylphenyl)-2'-nitro-1-benzenethiolate was confirmed. This material is well known as a conducting molecule having possible application to molecular level negative differential resistance (NDR) device. To deposit the self-assembly monolayers onto the gold electrode, the prefabricated Au(1 l l) substrates were immersed into 0.5[mM/l] self-assembly molecule in THF solution. Then, the electrical properties and surface morphologies of 4' 4-di(ethynylphenyl)-2' -nitro-1-benzenethiolate were measured by using the ultra-high vacuum scanning tunneling microscopy (UHV-STM).

A Study on the Current-Voltage Measurement of Self-Assembled Organic molecular onto Au Electrode (Au기판에 자기조립화된 유기 단분자의 전압-전류 측정 연구)

  • Kim, Seung-Un;Park, Sang-Hyun;Park, Jae-Chul;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1730-1733
    • /
    • 2004
  • Device miniaturization and high integrated circuit design is of major interest for the development of electronic devices. Various studies have been conducted to develop new material and processing technique[1]. Negative Differential Resistance(NDR) is the defining behavior in several electronic components, including the Esaki diode and most notably, resonant tunneling diodes(RTD)[2]. We made a comparison of electrical properties between 4,4-Di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene and 4-[2,5-dimethoxy-4-(p henylethynyl)phenyl]ethynylphenylethanethioate, which have been well known as a conducting molecule having possible application to molecular level NDR devices. As a result, we measured current-voltage curves using Scanning Tunneling microscopy(STM), I-V curves also showed several current peaks between negative and positive bias region.

  • PDF

Numerical Analysis of NDR characteristics in resonant tunneling diodes with AllnAs/GaInAs Structure (AlIanAs/GaInAS계 공명터널링 다이오드의 부성저항 특성에 관한 수치 해석)

  • Kim, SeongJeen
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.7
    • /
    • pp.51-57
    • /
    • 1995
  • The theoretical analysis for AlInAs/GaInAs resonant tunneling diodes (RTDs), which have shown the improved negative differential resistance (NDR) characteristics, has scarcely been made in comparison with AlGaAS/GaAs RTDs. In this paper, the static current-voltage relation of Al$_{0.48}In_{0.52}As/Ga_{0.47}In_{0.53}$As RTDs were numerically estimated by using a self-consistent method. Assuming a simplified RTD with single quantum well structure and spacer layers, the peak current density (J$_{P}$) and the peak-to-valley current ratio (PVCR) were analysed as the function of the thickness of the well, the barrier and the spacer layer, and temperature. As the results, the peak current density and the peak-to-valley current ratio indicated a reciprocal relation roughly in respect to the thicknesses of the well and the barrier, and it was theoretically predicted that it be not attainable to provide a high peak current desity (J$_{P}$) over 1${\times}10^{5}A/cm^{2}$ as well as the large peak-to-valley current ratio (PVCR) over 10 that were the the critical conditions for the practical use.

  • PDF

Calculation of Reactor Pressure Vessel Fluence Using TORT Code

  • Shin, Chul-Ho;Kim, Jong kyung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.771-776
    • /
    • 1998
  • TORT is employed for fast neutron fluence calculation at the reactor pressure vessel. KORI Unit 1 reactor at cycle 1 is modeled for this calculation. Three-dimensional cycle averaged assembly power distributions for KORI Vnit 1 at cycle 1 are calculated by using the core physics code, NESTLE 5.0. The root mean square error is within 4.3% compared with NDR (Nuclear Design Report) far all burnup steps. The C/E (Calculated/Experimental) values for the in-vessel dosimeters distribute between 0.98 and 1.36. The most updated cross-section library. BUGLE-96 based on ENDF/B-VI is used for the neutron fluence calculation. The makimum fast neutron nun calculated on reactor pressure vessel for KORI Unit 1 operated for 411.41 effgctive full power days is 1.784x10$^{18}$ n/$\textrm{cm}^2$. The position of the maximum neutron fluence in RPV wall 1/4 T is nearby 60cm below the midplane at zero degree.

  • PDF