• Title/Summary/Keyword: NDMA precursors

Search Result 11, Processing Time 0.028 seconds

Understanding N-nitrosodimethylamine (NDMA) formation during chloramination: Precursor characteristics, pathways and mitigation (상수 염소 처리 과정중에 형성되는 N-니트로소디메틸아민에 대한 이해: 전구체의 특징, 경로와 경감)

  • Seid., Mingizem Gashaw;Son, Aseom;Cho, Kangwoo;Hong, Seokwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.279-289
    • /
    • 2018
  • N-nitrosodimethylamine (NDMA) is a class of disinfection byproducts and a frequently detected nitrosamine with carcinogenic potentials. This review summarizes NDMA precursors, their formation mechanisms in chloraminated water, and mitigation strategies. Understanding the formation mechanism and characteristics of precursors is essential for developing a mitigation strategy. Dimethylamine (DMA), the most widely studied NDMA precursor, has an NDMA molar yield up to 3%. In comparison, a subset of tertiary amines, e.g., pharmaceuticals, generate up to 90% upon chloramination. Potent NDMA precursors, are characterized by their negative partial charge, low planarity values and molecular weight, and high bond length and $pK_a$ values. A nucleophilic substitution of tertiary amine on chloramine is a key reason for the high NDMA yield from the most potent NDMA precursors. The distribution and fate of NDMA in surface water, aquifers, and its formation in the distribution system can be mitigated through two strategies: (1) degrading or/removing NDMA after its formation and (2) pre-treatment of its precursor's prior chloramination.

Reduction in Concentrations of N-Nitrosodimethylamine and Its Precursors in Kimchi by Lactic Acid Bacteria (유산균에 의한 김치 중 N-Nitrosodimethylamine과 그 전구물질의 함량 감소)

  • Kim, Sang-Hyun;Kim, Sung Hyun;Kang, Kyung Hun;Kim, Jeong Gyun;Sung, Nak-Ju;Lim, Heekyung;Chung, Mi Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.237-243
    • /
    • 2017
  • To investigate the effects of lactic acid bacteria (LAB), Lactobacillus sakei, Lactobacillus curvatus, and Lactobacillus brevis, commonly found in kimchi, on N-nitrosodimethylamine (NDMA) and its precursors such as nitrite, dimethylamine (DMA), nitrate, and biogenic amines, Baechu (Chinese cabbage) kimchi prepared with and without LAB and $NaNO_2$ was periodically monitored for 20 days to analyze concentrations of NDMA and its precursors. Control was amine and nitrite-rich kimchi. NDMA and its precursors were analyzed to determine differences in concentrations between LAB-fortified kimchi and the control. The amounts of NDMA, nitrite, DMA, and nitrate remaining in LAB-fortified kimchi were significantly reduced compared with those of control kimchi. In addition, biogenic amines were significantly lower in kimchi prepared with L. sakei, L. curvatus, and L. brevis. These results suggest that addition of LAB to the kimchi preparation would be a promising solution for production of NDMA-reduced kimchi.

Contents of Nitrosamine Related Compounds in Some Foods and Condition for NDMA Formation in Vitro (식품중 Nitrosamine 관련물질의 함량과 시험관내에서 NDMA의 생성조건)

  • 김병태;김두희
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.1
    • /
    • pp.76-88
    • /
    • 1994
  • This study was carried out to investigate contents of nitrosamine precursors such as trite and dimethylamine( DMA ) in some foods. The diazo and Cu- dithiocarbamate melt were used for determination, respectively. The major affecting factors of Nnitrosodimethylamine( NDMA ) formation such as pH, contents of DMA and NaNO$_{2}$, other chemicals, and UV- ray in beverage were investigated in vitro. The contents of nitrite in meat sausage and meat ham were 6.44 ∼ 18.66ppm and 12.85- 39.95pp% respectively, And extremely low level was detected in a certain kind of fish sausage. The contents of DMA in meat sausage meat ham and fish sausage were 3.34∼15. 85ppm, 1.20∼7.10ppm and 7.38∼12.28ppm, respectively. The optimum pH for NDMA formation in vitro was 3.0. NDMA formation was rapidly occurred at high temperature and formed above 80% within 1 hour reaction. The formation of NDMA was increased in proportion to the concentration of DMA and the square of the nitrite concentration. 0.1 M of sodium citrate, sodium tartarated and sodium taiocyanate enhanced NDMA formation. But sodium chloride did not affect. However, 0.3M of ascorbic acid, erythroid acid, ascorbic, palmitate and propy, gallate inhibited NDMA formalion approximately 78%,81%,86% and 85%, respectively. Cow milk and soybean milk inhibited 35 ∼47% of NDMA formation but orange juice and apple juice enhanced 15 ∼64% of NDMA formation. The peak in HPLC for NDMA disappeared by irradiation of UV to prior formed NDMA This result suggest that NDMA was destroyed by UV irradiation.

  • PDF

The Formaion of N-nitrosamine in Soy Sauce, Soybean Paste and Beer under Simulated Gastric Digestion (간장, 된장 및 맥주의 인공소화시 N-nitrosamine의 생성)

  • Kim, Kyung-Ran;Lee, Soo-Jung;Shin, Jung-Hye;Seo, Jong-Kwon;Shon, Mi-Yae;Sung, Nak-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.378-383
    • /
    • 2002
  • The aim of the study was to analyze N-nitrosamine (NA) and its precursors in serveral fermented foods which were treated with nitrite, thiocyanate and ascorbic acid under simulated gastric digestion. Every analyzed sample contained nitrate, with levels ranging from 0.3 to 1.3 mg/kg, but nitrite was present at very low levels of less than 0.3 mg/kg. And other precursors of amines such as dimethylamine and trimethylamine were detected less than 0.5 mg/kg in every samples. N-nitrosodimethylamine (NDMA) was detected in the levels of <0.5 ∼ 2.7 ug/kg in soy sauce,1.5∼3.1 ug/kg in soybean paste and <0.5∼1.8 ug/kg in beer, while NDMA levels increased by 1.1∼4.5 times in the fermented foods which were digested under simulated gastric conditions.

Factors Attributing to the Formation of N-Nitrosamines in Instant Food (즉석 식품에서 니트로사민이 검출되는 요인 분석)

  • Suh, Bokyung;Kwon, Hoonjeong
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.114-122
    • /
    • 2017
  • N-nitrosamines can be produced in the process of heating, processing, storage and packaging. Migration specifications for N-nitrosamines exist only for rubber baby bottle nipples, which are regulated by the Ministry of Food and Drug Safety (MFDS). There is no regulation for other food contact substances (FCS) and studies on N-nitrosamines migration from FCS are rather limited. A pilot study showed an increase in N-nitrosamines contents when cooking instant noodles. Thus, the migration from the packaging was suspected and it was necessary to monitor the migration of N-nitrosamines from food packaging materials and to examine the change in N-nitrosamines contents when cooking instant foods. Three N-nitrosamines, NDMA (N-nitrosodimethtlamine), NDEA (N-nitrosodiethylamine), NDBA (N-nitrosodibutylamine), were analyzed in migration test solutions from plastics such as polyethylene, polypropylene and polystyrene, papers and aluminium containers. In all test solutions, N-nitrosamines were detected less than method quantitation limits (MQLs). Food samples were also investigated to ensure that there is no effect from food contact substances when cooking instant foods. In retort sauces such as curry, black soybean sauce and tomato sauce, NDMA concentration was ranged from 0.54 to $3.81{\mu}g/kg$, but there were no significant differences between unheated and heated samples. However, the NDMA contents were significantly increased in most of the instant noodle samples tested when cooked (p < 0.05). No effects from the food contact substances or cooking water was observed. Only when the seasoning powder and noodles were cooked together was NDMA detected. Individual components (noodle, seasoning powder or dried vegetable) or other combinations such as noodles and dried vegetables did not generate N-nitrosamines. Therefore, it is speculated that NDMA may be formed from the precursors in noodles and seasoning powders when they are solubilized in a medium of water.

Effects of Nitrite and Nitrate Contents of Chinese Cabbage on Formation of N-Nitrosodimethylamine during Storage of Kimchi (김치 저장 중 N-Nitrosodimethylamine 생성에 배추 내 아질산염과 질산염 함량의 영향)

  • Kang, Kyung Hun;Lee, Soo-Jung;Ha, Eun-Seon;Sung, Nak-Ju;Kim, Jeong Gyun;Kim, Sung Hyun;Kim, Sang-Hyun;Chung, Mi Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.117-125
    • /
    • 2016
  • Nitrite and dimethylamine (DMA) are the immediate precursors of carcinogenic N-nitrosodimethylamine (NDMA). This study investigated the effects of nitrite and nitrate contents in Chinese cabbage on changes in NDMA, nitrite, nitrate, and DMA contents during storage of kimchi. Contents of nitrite in Chinese cabbage 1 (HNC), Chinese cabbage 2 (MNC), and Chinese cabbage 3 (LNC) were $47.54{\pm}1.07$, $10.12{\pm}0.31$, and $6.10{\pm}0.09mg/kg$, respectively. Kimchi were assigned to one of the following three groups: kimchi used HNC (HNK), kimchi used MNC (MNK), and kimchi used LNC (LNK). HNK had higher levels of nitrite and nitrate than those in MNK and LNK after storage for 10 days and 20 days. DMA and NDMA contents decreased in all kimchi during the storage period. HNK had higher NDMA content than LNK until 20 days of storage. These results suggest that the contents of nitrite and nitrate in Chinese cabbage have significant effects on the formation of NDMA in kimchi.

The formation of N-Nitrosamine in commercial Cured products 1. Occurrence of N-Nitrosamine in commercial Ham and Sausage (시판 식육제품 중 N-Nitrosamine의 생성 제1보. 시판햄 및 소시지 중 N-Nitrosamine의 검출)

  • 박계란;이수정;신정혜;김정균;성낙주
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.4
    • /
    • pp.400-405
    • /
    • 1998
  • This experiment was conducted to study occurrence of N-nitrosamine (NA) and its precursors such as nitrate and nitrite. For the experimental samples, 26 kinds of commercial hams and 30 kinds of sausages produced in Korea were purchased. The nitrate and nitrite were positive in all of the collected samples; nitrate levels were by average 4.4~9.2 mg/kg and nitrite ones were by average 1.3~3.6 mg/kg. The contents of nitrate and nitrite were detected higher in sausage than in ham. Especially, nitrate contents were contained higher in lyoner sausage prepared with the mixture of meat and fish, while nitrite contents were contained higher in the meat only mixture. N-nitrosodimethylamine (NDMA) among the analyzed 7 kinds of NA was detected only in ham and sausage; its contents were outstanding in lyoner sausage which was prepared with only meat and pork sausage, and then regular ham was the next one in its order, but its contants were detected by average $<0.5\;\mu\textrm{g}/kg$ in press hams added vegetable.

  • PDF

Analysis and Risk Assessment of N-Nitrosodimethylamine and Its Precursor Concentrations in Korean Commercial Kimchi (국내 유통 김치 중 N-Nitrosodimethylamine과 그 전구물질의 함량 분석 및 안전성 평가)

  • Kang, Kyung Hun;Kim, Sung Hyun;Kim, Sang-Hyun;Kim, Jeong Gyun;Sung, Nak-Ju;Lim, Heekyung;Chung, Mi Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.244-250
    • /
    • 2017
  • Dimethylamine (DMA), nitrate, nitrite, and biogenic amines (BA) are precursors of carcinogenic N-nitrosamines. This study investigated contamination levels of DMA, nitrate, nitrite, and BA in various types of Korean commercial kimchi such as Baechu kimchi, Kkakduki, Chonggak kimchi, Matkimchi, ripened Baechu kimchi, and Baek kimchi. The average DMA, nitrate, and nitrite levels in Baechu kimchi were 29.7, 2,178.8, and 3.0 mg/kg, respectively. Low levels of DMA and nitrate were detected in Kkakduki. Tryptamine, putrescine, cadaverine, tyramine, and spermidine were detected in kimchi with exclusion of Baek kimchi and Chonggak kimchi. Tryptamine in Baek kimchi was only present in trace amount, and spermidine was not detected in Chonggak kimchi. The average tryptamine, putrescine, cadaverine, tyramine, and spermidine levels in Baechu kimchi were 15.0, 64.6, 18.0, 44.0, and 7.8 mg/kg, respectively. A low level of tyramine was detected in Kkakduki. In addition, contamination of N-nitrosodimethylamine (NDMA) was detected in Kkakduki at a level of $1.38{\mu}g/kg$. Daily exposure to NDMA in the consumer only group was estimated using average daily Kkakduki consumption and average body weight of the total population. The estimated daily intake of NDMA by Kkakduki was $2.31{\times}10^{-7}mg/kg\;b.w./d.$ The margin of exposure to NDMA for the general population was 259,924. Accordingly, the health risk from NDMA caused by intake of Kkakduki was considered to be very low.

The Content of N-nitrosamine in Mollusk Crustacea and Shellfish (연체류, 갑각류 및 패류 중 N-Nitrosamine 함량)

  • Oh, Myung-Cheol;Oh, Chang-Kyung;Yang, Tai-Suk;Kim, Bong-Oh;Kim, Soo-Hyun;Oh, Hyuk-Soo
    • Culinary science and hospitality research
    • /
    • v.11 no.4 s.27
    • /
    • pp.1-13
    • /
    • 2005
  • This study analyzed the levels of N-nitrosamine(NA) and its precursors such as nitrite, nitrate, dimethylamine and trimethylamine in 10 samples of mollusk fish, 4 samples of crustacea fish and 11 samples of shellfish from fish distributed in a local markets. Mollusk fishes had nitrite concentrations ranging from non-detectable(ND) to 9.4 mg/kg, crustacea fishes ND to 8.8 mg/kg, and shellfishes ND to 4.3 mg/kg. Nitrates in mollusk fishes ranged from ND to 19.3 mg/kg, crustacea fishes 4.1 to 79.9 mg/kg, and shellfishes 1.5 to 61.9 mg/kg. DMK concentrations were 11.2 to 551.4 mg/100g in mollusk fishes, 44.4 to 79.9 mg/100g in crustacea fishes, and 1.3 to 5.9 mg/100g in shellfishes. TMA concentrations in mollusk fishes, crustacea fishes, and shellfishes were 10.3${\sim}$292.4 mg/100g, 35.5${\sim}$90.3 mg/100g, and 2.3${\sim}$17.1 mg/100g respectively. Only N-nitrosodimethylamine (NDMA) was detected for NA in fish distributed in local markets. NDMA contentrations ranged from ND to 41.4 ${\mu}g/kg$ in mollusk fishes, 3.0 to 47.3 ${\mu}g/kg$ in crustacea fishes, and 1.7 to 12.1 ${\mu}g/kg$ in shellfishes.

  • PDF

Strawberry, Garlic and Kale Consumption Increase Urinary Excretion of Dimethylamine and Trimethylamine in Humans

  • Chung, Mi-Ja;Lee, Soo-Jung;Shin, Jung-Hye;Sung, Nak-Ju
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.19-23
    • /
    • 2003
  • Dimethylamine (DMA) is the immediate precursor of carcinogenic N-nitrosodimethylamine (NDMA). In vitro and in vivo experiments using whole strawberries, and garlic and kale juices were conducted to determine concentrations of DMA and trimethylamine (TMA) in foods and urine. Experimental diets [an amino-rich diet as nitrosatable precursors in combination with added nitrate-containing drinking water without (TD1) or with whole strawberries or garlic or kale juices (TD2, TD3 and TD4, respectively), or a diet of low in nitrate and amino (TD5) were incubated in simulated saliva and gastric juices at 37$^{\circ}C$ for 1 hour. We also studied the urinary excretion of DMA and TMA after consumption of the experimental diets (TD1~TD5). Urine samples were obtained for 18 hrs after consumption of experimental diets and concentrations of DMA and TMA were measured in the digested diet and urine. The DMA concentration after incubation in experimental diets (TD1~TD5) was 4.7$\pm$0.3, 6.7 $\pm$0.2, 7.9$\pm$0.2, 7.1$\pm$0.2 and 0.3$\pm$0.1 mg/kg, respectively. Urinary excretion of DMA (TD1~TD5) was 22.0$\pm$5.0, 28.3$\pm$4.3, 29.2$\pm$4.1, 27.4$\pm$4.5 and 20.4$\pm$3.1 mg/18 hr, respectively. Consumption diets with added strawberries or juices of kale or garlic increased urinary TMA and DMA, suggesting that those precursors were excreted and not converted to the carcinogen, NMDA.