• Title/Summary/Keyword: NDIR (Non-Dispersive Infrared)

Search Result 36, Processing Time 0.021 seconds

Development of Fast-Response $CO_2$ Analyzer and Analysis of Engine-out Emission during Transient Condition of SI engine (고속응답 $CO_2$ 분석기의 제작 및 이를 이용한 SI 엔진에서의 실시간 배기가스 분석에 관한 연구)

  • Song, Hyun-Soo;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3079-3084
    • /
    • 2008
  • A fast response $CO_2$ analyzer has been developed for measuring the $CO_2$ concentration during transient condition of SI engine. The analyzer is based on the non-dispersive infrared absorption technique, electrical chopping system and water cooling system. The analyzer has good repeatability, linearity and permissible drift characteristic. Besides, it has 18ms with a response to measure the $CO_2$ concentration. The fast response $CO_2$ analyzer was applied to single cylinder SI engine and the $CO_2$ emission was examined during engine start. Simultaneously, the standard exhaust gas analyzer, which has slow response time, was used for considering the engine-out $CO_2$ characteristic. The developed analyzer showed much faster responsive characteristic than that of a standard analyzer and made cycle by cycle exhaust gas analysis possible. The transient engine operating characteristics will be estimated and the transient behaviors on engine-out emission and performance will be improved.

  • PDF

A Comparison Study of Alkalinity and Total Carbon Measurements in $CO_2$-rich Water (탄산수의 알칼리도 및 총 탄소 측정방법 비교 연구)

  • Jo, Min-Ki;Chae, Gi-Tak;Koh, Dong-Chan;Yu, Yong-Jae;Choi, Byoung-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.1-13
    • /
    • 2009
  • Alkalinity and total carbon contents were measured by acid neutralizing titration (ANT), back titration (BT), gravitational weighing (GW), non-dispersive infrared-total carbon (NDIR-TC) methods for assessing precision and accuracy of alkalinity and total carbon concentration in $CO_2$-rich water. Artificial $CO_2$-rich water(ACW: pH 6.3, alkalinity 68.8 meq/L, $HCO_3^-$ 2,235 mg/L) was used for comparing the measurements. When alkalinity measured in 0 hr, percent errors of all measurement were 0~12% and coefficient of variation were less than 4%. As the result of post-hoc analysis after repeated measure analysis of variance (RM-AMOVA), the differences between the pair of methods were not significant (within confidence level of 95%), which indicates that the alkalinity measured by any method could be accurate and precise when it measured just in time of sampling. In addition, alkalinity measured by ANT and NDIR-TC were not change after 24 and 48 hours open to atmosphere, which can be explained by conservative nature of alkalinity although $CO_2$ degas from ACW. On the other hand, alkalinity measured by BT and GW increased after 24 and 48 hours open to atmosphere, which was caused by relatively high concentration of measured total carbon and increasing pH. The comparison between geochemical modeling of $CO_2$ degassing and observed data showed that pH of observed ACW was higher than calculated pH. This can be happen when degassed $CO_2$ does not come out from the solution and/or exist in solution as $CO_{2(g)}$ bubble. In that case, $CO_{2(g)}$ bubble doesn't affect the pH and alkalinity. Thus alkalinity measured by ANT and NDIR-TC could not detect the $CO_2$ bubble although measured alkalinity was similar to the calculated alkalinity. Moreover, total carbon measured by ANT and NDIR-TC could be underestimated. Consequently, it is necessary to compare the alkalinity and total carbon data from various kind of methods and interpret very carefully. This study provide technical information of measurement of dissolve $CO_2$ from $CO_2$-rich water which could be natural analogue of geologic sequestration of $CO_2$.

Speculation of Optical Cavity for Improving Optical Gas Sensor's Characteristics (광학적 가스센서 특성 향상을 위한 광 공동 구조의 고찰)

  • Yi, Seung-Hwan;Park, Jong-Seon
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.63-68
    • /
    • 2008
  • This paper describes about the simulation and the experimental results of optical cavity with curved mirror surface and vertical mirror surface to improve the light intensity and efficiency of the optical sensors. When we use the vertical mirror surface, the distribution of light reached to the filter surface of detector shows an elliptical shape. Whereas, the curved mirror surface focuses the light into circular shape. Therefore, due to focusing effects in case of using curved mirror surface, the light intensity per unit area has been improved. Consequently, the output voltage of gas sensor has been expected to increase. Based upon the simulation, the experiment of gas sensor has been conducted with $CO_2$ gas from 0ppm to 2,500 ppm at 250 ppm step and $25^{\circ}C$, 45%R.H. ambient. The output voltage of gas sensor that has a curved mirror surface increases approximately 200 mV than that of vertical mirror surface.

  • PDF

Characteristics of GHGs Emissions from Wastewater Treatment Process of Dairy Industry (유제품 가공산업의 폐수처리시설로부터 발생되는 온실가스 배출 특성)

  • Kim, Ji-Hye;Oh, Minhee;Kim, Ji-Hyo;Kang, Seong-Min;Jeong, Jae-Heon;Sa, Jae-Hwan;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.2
    • /
    • pp.103-110
    • /
    • 2016
  • In this study, we researched the characteristics of $CH_4$ and $N_2O$ emission of the wastewater treatment (WWT) process in the dairy industry. For flux measurements at the air-water interface, a floating dynamic flow-through chamber was used above the water surface. $CH_4$ and $N_2O$ concentration from the WWT process was measured by NDIR (Non-Dispersive Infrared) Analyser. In the study, $CH_4$ and $N_2O$ fluxes results showed a distinct difference for each WWT process. 60% of the GHG emissions which was the highest percentage were from the equalization tank. Reactor tank was second with 27% of the total emissions from the WWT. Aeration tank was third with 12% of the total emissions. The tendency was that the more the wastewater was treated, the less GHGs were emitted. $CH_4$ and $N_2O$ showed the same tendency. This indicates that the concentrations and properties of wastewater could affect the tendency.

The Development of N2O Emission Factor at Municipal Solid Waste Incinerator (도시고형폐기물 소각시설의 N2O 배출계수 개발)

  • Ko, Jae Churl;Choi, Sang Hyun
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.40-45
    • /
    • 2019
  • In this study, nitrous oxide ($N_2O$) emission concentration was measured 3 times continuously for 24 hours from August 27, 2018 to October 22, 2018 and non-dispersive infrared (NDIR) spectrometer was used to calculate $N_2O$ concentration of exhaust gas from municipal solid waste (MSW) incinerator. As a result of $N_2O$ emission characteristics, it is estimated that $N_2O$ emission concentration is due to the difference of furnace temperature, oxygen concentration rather than the chemical component of waste. The measured $N_2O$ emission concentration of MSW incinerator was obtained in the range of 53.6 ~ 59.5 ppm and the total average concentration was measured 55.6 ppm. Therefore, the amount of $N_2O$ emissions calculated from the $N_2O$ concentration was $98.05kg\;day^{-1}$ on average and the amount of $N_2O$ distribution in the range of $90.41{\sim}108.44kg\;day^{-1}$ was obtained. As a result, the $N_2O$ emission factor of the MSW incinerator was estimated to be $1,066.13g_{N_2O}\;ton_{waste^{-1}}$. The estimated $N_2O$ emission factor of the MSW incinerator was 20 times higher than calculated emission factor used in the Tier 2 method. Consequently, it is considered that the method of calculating the amount of $N_2O$ emission in the MSW incineration facilities using waste type and incineration amount needs to be supplemented to ensure accuracy.

Evaluation on the Greenhouse Gas Emission According to the Intake Levels of Total Mixed Rations of Hanwoo Cow (급여수준에 따른 한우 암소의 온실가스 배출량 평가)

  • Kim, Du-Ri;Ha, Jae-Jung;Kim, Jong-Taek;Song, Young-Han
    • Journal of Animal Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.475-480
    • /
    • 2011
  • This study was conducted to investigate the effects of different feeding level of TDN (Total Digestible Nutrients) on the generation of main greenhouse gases such as carbon dioxide and methane in Hanwoo cows. The diet TDN (kg) adjusted to achieve ADG of 0 g/day (Control), 200 g/day (T1), and 400 g/day (T2) of the maintenance level TMR (Total Mixed Ration) delivered twice a day at 08:30 and 17:30. Cow are housed in a respiration chamber and the environmental temperature was maintained at $20^{\circ}C$. The gases were measured for 24 hours using the multi-detector instrument Mamos-300. The analyzed methane emissions of T1 and T2 were 33.5% and 69.6% higher than control, respectively, and the carbon dioxide emissions were 21.1% and 40.6% higher than control. Also, the hourly pattern of carbon dioxide and methane production were showed very similar emission. Gas production showed peak after 1 hour of feeding and this gap was wider in the afternoon than in the morning hours. It is clearly conducted that $CO_2$ and $CH_4$ emissions were different by limited intake levels of feed.