구묶음은 문장을 겹치지 않는 문장 구성 성분으로 나누는 과정으로, 구묶음 방법에 따라 구문분석, 관계 추출 등 다양한 하위 태스크에 사용할 수 있다. 본 논문에서는 문장의 키워드를 추출하기 위한 구묶음 방식을 제안하고, 키워드 단위 구묶음 데이터를 구축하기 위한 가이드라인을 제작하였다. 해당 가이드라인을 적용하여 구축한 데이터와 BERT 기반의 모델을 이용하여 학습 및 평가를 통해 구축된 데이터의 품질을 측정하여 78점의 F1점수를 얻었다. 이후 패턴 통일, 형태소 표시 여부 등 다양한 개선 방법의 적용 및 재실험을 통해 가이드라인의 개선 방향을 제시한다.
스포츠 방송/미디어 데이터에서 특정 이벤트 시점을 효율적으로 검출하는 방법은 정보 검색이나 하이라이트, 요약 등을 위해 중요한 기술이다. 이 논문에서는, 야구 중계 방송 데이터에서 투구에 대한 타격 및 포구 이벤트 시점을 강인하게 검출하는 방법으로, 음향 및 영상 정보를 융합하는 방법에 대해 제안한다. 음향 정보에 기반한 이벤트 검출 방법은 계산이 용이하고 정확도가 높은 반면, 영상 정보의 도움 없이는 모호성을 해결하기 힘든 경우가 많이 발생한다. 특히 야구 중계 데이터의 경우, 투수의 투구 시점에 대한 영상 정보를 활용하여 타격 및 포구 이벤트 검출의 정확도를 보다 향상시킬 수 있다. 이 논문에서는 음향 기반의 딥러닝 이벤트 시점 검출 모델과 영상 기반의 보정 방법을 제안하고, 실제 KBO 야구 중계 방송 데이터에 적용한 사례와 실험 결과에 대해 기술한다.
질문에 답하기 위해 관련 구절을 검색하는 기술은 오픈 도메인 질의응답의 검색 단계를 위해 필요하다. 전통적인 방법은 정보 검색 기법인 빈도-역문서 빈도(TF-IDF) 기반으로 희소한 벡터 표현을 활용하여 구절을 검색한다. 하지만 희소 벡터 표현은 벡터 길이가 길 뿐만 아니라, 질문에 나오지 않는 단어나 토큰을 검색하지 못한다는 취약점을 가진다. 밀집 벡터 표현 연구는 이러한 취약점을 개선하고 있으며 대부분의 연구가 영어 데이터셋을 학습한 것이다. 따라서, 본 연구는 한국어 데이터셋을 학습한 밀집 벡터 표현을 연구하고 여러 가지 부정 샘플(negative sample) 추출 방법을 도입하여 전이 학습한 모델 성능을 비교 분석한다. 또한, 대화 응답 선택 태스크에서 밀집 검색에 활용한 순위 재지정 상호작용 레이어를 추가한 실험을 진행하고 비교 분석한다. 밀집 벡터 표현 모델을 학습하는 것이 도전적인 과제인만큼 향후에도 다양한 시도가 필요할 것으로 보인다.
의미역은 자연어 문장의 서술어와 관련된 논항의 역할을 설명하는 것으로, 주어진 서술어에 대한 논항인식(Argument Identification) 및 분류(Argument Labeling)의 과정을 거쳐 의미역 결정(Semantic Role Labeling)이 이루어진다. 이를 위해서는 격틀 사전을 이용한 방법이나 말뭉치를 이용한 지도 학습(Supervised Learning) 방법이 주를 이루고 있다. 이때, 격틀 사전 또는 의미역 주석 정보가 부착된 말뭉치를 구축하는 것은 필수적이지만, 이러한 노력을 최소화하기 위해 본 논문에서는 비모수적 베이지안 모델(Nonparametric Bayesian Model)을 기반으로 서술어에 가능한 의미역을 추론하는 비지도 학습(Unsupervised Learning)을 수행한다.
온라인 게시판 글과 채팅창에서 주고받는 대화는 실제 사용되고 있는 구어체 특성이 잘 반영된 텍스트 코퍼스로 음성인식의 언어 모델 재료로 활용하기 좋은 학습 데이터이다. 하지만 온라인 특성상 노이즈가 많이 포함되어 있기 때문에 학습에 직접 활용하기가 어렵다. 본 논문에서는 사용자 입력오류가 다수 포함된 문장에서의 한글 오류 보정을 위한 sequence-to-sequence Denoising Autoencoder 모델을 제안한다.
의미역은 자연어 문장의 서술어와 관련된 논항의 역할을 설명하는 것으로, 주어진 서술어에 대한 논항 인식(Argument Identification) 및 분류(Argument Labeling)의 과정을 거쳐 의미역 결정(Semantic Role Labeling)이 이루어진다. 이를 위해서는 격틀 사전을 이용한 방법이나 말뭉치를 이용한 지도 학습(Supervised Learning) 방법이 주를 이루고 있다. 이때, 격틀 사전 또는 의미역 주석 정보가 부착된 말뭉치를 구축하는 것은 필수적이지만, 이러한 노력을 최소화하기 위해 본 논문에서는 비모수적 베이지안 모델(Nonparametric Bayesian Model)을 기반으로 서술어에 가능한 의미역을 추론하는 비지도 학습(Unsupervised Learning)을 수행한다.
본 연구는 딥 러닝 기반 의존 구문 분석에서, 학습에 적용하는 손실 함수에 따른 성능을 평가하였다. Pointer Network를 이용한 Left-To-Right 모델을 총 세 가지의 손실 함수(Maximize Golden Probability, Cross Entropy, Local Hinge)를 이용하여 학습시켰다. 그 결과 LH 손실 함수로 학습한 모델이 선행 연구와 같이 MGP 손실 함수로 학습한 것에 비해 UAS/LAS가 각각 0.86%p/0.87%p 상승하였으며, 특히 의존 거리가 먼 경우에 대하여 분석 성능이 크게 향상됨을 확인하였다. 딥러닝 의존 구문 분석기를 구현할 때 학습모델과 입력 표상뿐만 아니라 손실 함수 역시 중요하게 고려되어야 함을 보였다.
기존의 자연어 의미 표상 방법은 크게 나눠보았을 때 두 가지가 있다. 첫 번째로, 전통적인 기호 기반 의미 표상 방법론이다. 이 방법론들은 논리적이고 해석가능하다는 장점이 있으나, 구축에 시간이 많이 들고 정작 기호 자체의 의미를 더욱 미시적으로 파악하기 어렵다는 단점이 있었다. 반면, 최근 대두된 분산 표상의 경우 단어 하나하나의 의미는 상대적으로 잘 파악하는 반면, 문장 등의 복잡한 구조의 의미를 나타내는 데 있어 상대적으로 약한 측면을 보이며 해석가능하지 않다는 단점이 있다. 본 논문에서는 이 둘의 장점을 섞어서 서로의 단점을 보완하는 새로운 의미 표상을 제안하였으며, 이 표상이 유의미하게 문장의 의미를 담고 있음을 비지도 문장 군집화 문제를 통해 간접적으로 보였다.
본 연구는 초경쟁적인 환경에서 온라인개발회사가 동태적 역량을 만들어 낼 수 있는 조직학습인 활용과 탐험에 대하여 엔씨소프트 사례를 중심으로 분석하였다. 학습, 루틴, 기존환경과의 적합성을 특징으로 하는 활용은 점진적 혁신을 이끌어 내는 반면, 비학습, 변화하는 환경에의 유연성과 관련된 탐험은 급진적인 혁신을 이끌어 낸다. 문헌연구를 바탕으로 우선 엔씨소프트의 활용과 탐험 활동을 온라인 게임산업의 사이클에 따라 검증하였다. 다음으로 엔씨소프트의 다양한 게임서비스의 사이클을 중심으로 활용과 탐험에 대해 살펴보았다. 온라인게임시장에서 비교적 빠르게 선도적 입지를 구축한 엔씨소프트는 온라인 게임산업 태동기와 성장기에는 활용 활동을 주로 하였으나, 산업의 성숙기에는 탐험활동을 늘여 왔다. 또한 각 게임서비스 라인의 신작 출시 및 기술개발에는 탐험활동을, 지속적인 패치 서비스 업데이트와 마케팅 및 시스템구축에는 활용활동을 수행하였다. 이것은 온라인 게임회사가 활용과 탐험의 균형을 통해 지속적인 경쟁우위를 창출할 수 있음을 시사한다.
본 연구에서는 온라인게임산업의 선도기업인 "엔씨소프트"의 혁신역량을 혁신경로 창출능력의 관점에서 핵심기술 관리역량 6개 지표, 연계/통합 역량 4개 지표, 기술혁신 전략수립/정책대응 역량 3개 지표를 토대로 분석하였다. 각 부분별 이 기업의 대표적 강점으로는 핵심기술관리의 측면에서 글로벌 선도게임개발에 대한 지속적인 R&D투자, 연계/통합전략의 측면에서 해외 R&D인력과 스튜디오에 대한 적극적 투자와 M&A전략, 그리고 기술전략/정책 부문에서 글로벌 기술리더십의 확보를 들 수 있었다. 반면 보완이 필요한 부분으로 핵심기술관리 측면에서 개방형/가치창출형 지식재산관리전략으로 전환과 중장기적인 원천기술개발에 대한 투자 증대, 연계/통합전략 측면에서 공공부문 R&D기관과의 상생적 보완/협력방안 마련 및 국내와 해외 스튜디오 간 신기술 지식 교류 활성화 전략 수립의 필요 그리고 기술전략/정책 부문에서 새로운 사회적 가치를 제공하는 기능성 게임에 대한 투자 증대를 꼽을 수 있었다. 이와 같은 선도기업의 분석결과는 업계 전반의 발전전략 수립에도 시사점을 지닌다고 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.