• Title/Summary/Keyword: NCTF controller

Search Result 2, Processing Time 0.022 seconds

Improvement of Practical Control Method for Positioning Systems in the Presence of Actuator Saturation by Incorporating Takagi-Sugeno(TSK) Fuzzy Anti-reset Windup

  • Ibrahim, Tarig Faisal;;Salami, M.J.E.;Albagul, Abdulgani
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.975-980
    • /
    • 2004
  • Positioning system is widely used for many practical applications. This system requires a good controller to achieve high accuracy and fast response with simple and self-adjustable design. In order to satisfy the above requirements, a new practical controller for positioning systems, namely nominal characteristic trajectory following (NCTF) controller with PI compensator, has been proposed. However, the effect of actuator saturation can not be completely compensated for integrator windup when the object parameters vary. This paper presents a method to improve the NCTF controller by overcoming the problem of integrator windup by adopting a fuzzy system. The improvement of the NCTF controller is evaluated through simulation using a rotary positioning system. The simulation result has demonstrated the effectiveness of the compensated NCTF in overcoming the problem of integrator windup.

  • PDF

Practical Ultraprecision Positioning of a Ball Screw Mechanism

  • Sato, Kaiji;Maeda, Guilherme Jorge
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.44-49
    • /
    • 2008
  • This paper describes the problem of ultraprecision positioning with a ball screw mechanism in the microdynamic range, along with its solution. We compared the characteristics of two ball screw mechanisms with different table masses. The experimental results showed that the vibration resulting from the low stiffness of the ball screw degraded the positioning performance in the microdynamic range for the heavyweight mechanism. The proposed nominal characteristic trajectory following (NCTF) controller was designed for ultra precision positioning of the ball screw mechanism. The basic NCTF control system achieved ultra precision positioning performance with the lightweight mechanism, but not with the heavyweight mechanism. A conditional notch filter was added to the NCTF controller to overcome this problem. Despite the differences in payload and friction, both mechanisms then showed similar positioning performance, demonstrating the high robustness and effectiveness of the improved NCTF controller with the conditional notch filter. The experimental results demonstrated that the improved NCTF control system with the conditional notch filter achieved ultra precision positioning with a positioning accuracy of better than 10 nm, independent of the reference step input height.