• Title/Summary/Keyword: NCI-H460 lung cancer

Search Result 46, Processing Time 0.021 seconds

Long Noncoding RNA Expression Profiling Reveals Upregulation of Uroplakin 1A and Uroplakin 1A Antisense RNA 1 under Hypoxic Conditions in Lung Cancer Cells

  • Byun, Yuree;Choi, Young-Chul;Jeong, Yongsu;Yoon, Jaeseung;Baek, Kwanghee
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.975-988
    • /
    • 2020
  • Hypoxia plays important roles in cancer progression by inducing angiogenesis, metastasis, and drug resistance. However, the effects of hypoxia on long noncoding RNA (lncRNA) expression have not been clarified. Herein, we evaluated alterations in lncRNA expression in lung cancer cells under hypoxic conditions using lncRNA microarray analyses. Among 40,173 lncRNAs, 211 and 113 lncRNAs were up- and downregulated, respectively, in both A549 and NCI-H460 cells. Uroplakin 1A (UPK1A) and UPK1A-antisense RNA 1 (AS1), which showed the highest upregulation under hypoxic conditions, were selected to investigate the effects of UPK1A-AS1 on the expression of UPK1A and the mechanisms of hypoxia-inducible expression. Following transfection of cells with small interfering RNA (siRNA) targeting hypoxia-inducible factor 1α (HIF-1α), the hypoxia-induced expression of UPK1A and UPK1A-AS1 was significantly reduced, indicating that HIF-1α played important roles in the hypoxia-induced expression of these targets. After transfection of cells with UPK1A siRNA, UPK1A and UPK1A-AS1 levels were reduced. Moreover, transfection of cells with UPK1A-AS1 siRNA downregulated both UPK1A-AS1 and UPK1A. RNase protection assays demonstrated that UPK1A and UPK1A-AS1 formed a duplex; thus, transfection with UPK1A-AS1 siRNA decreased the RNA stability of UPK1A. Overall, these results indicated that UPK1A and UPK1A-AS1 expression increased under hypoxic conditions in a HIF-1α-dependent manner and that formation of a UPK1A/UPK1A-AS1 duplex affected RNA stability, enabling each molecule to regulate the expression of the other.

The Effect of Inhibition of Heme Oxygenase-1 on Chemosensitivity of Cisplatin in Lung Cancer Cells (폐암세포주에서 Heme Oxygenase-1의 억제가 Cisplatin의 항암제 감수성에 미치는 영향)

  • Kim, So-Young;Kim, Eun-Jung;Jang, Hye-Yeon;Hwang, Ki-Eun;Park, Jung-Hyun;Kim, Hwi-Jung;Jo, Hyang-Jeong;Yang, Sei-Hoon;Jeong, Eun-Taik;Kim, Hak-Ryul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.1
    • /
    • pp.33-42
    • /
    • 2007
  • Background: Heme oxygenase-1 (HO-1) is known to modulates the cellular functions, including cell proliferation and apoptosis. It is known that a high level of HO-1 expression is found in many tumors, and HO-1 plays an important role in rapid tumor growth on account of its antioxidant and antiapoptotic effects. Cisplatin is a widely used anti-cancer agent for the treatment of lung cancer. However, the development of resistance to cisplatin is a major obstacle to its use in clinical treatment. We previously demonstrated that inhibiting HO-1 expression through the transcriptional activation of Nrf2 induces apoptosis in A549 cells. The aim of this study was to determine of the inhibiting HO-1 enhance the chemosensitivity of A549 cells to cisplatin. Materials and Methods: The human lung cancer cell line, A549, was treated cisplatin, and the cell viability was measured by a MTT assay. The change in HO-1, Nrf2, and MAPK expression after the cisplatin treatment was examined by Western blotting. HO-1 inhibition was suppressed by ZnPP, which is a specific pharmacologic inhibitor of HO activity, and small interfering RNA (siRNA). Flow cytometry analysis and Western blot were performed in to determine the level of apoptosis. The level of hydrogen peroxide ($H_2O_2$) generation was monitored fluoimetrically using 2',7'-dichlorofluorescein diacetate. Results: The A549 cells showed more resistance to the cisplatin treatment than the other cell lines examined, whereas cisplatin increased the expression of HO-1 and Nrf2, as well as the phosphorylation of MAPK in a time-dependent fashion. Inhibitors of the MAPK pathway blocked the induction of HO-1 and Nrf2 by the cisplatin treatment in A549 cells. In addition, the cisplatin-treated A549 cells transfected with dither the HO-1 small interfering RNA (siRNA) or ZnPP, specific HO-1 inhibitor, showed in a more significantly decrease in viability than the cisplatin-only-treated group. The combination treatment of ZnPP and cisplatin caused in a marked increase in the ROS generation and a decrease in the HO-1 expression. Conclusion: Cisplatin increases the expression of HO-1, probably through the MAPK-Nrf2 pathway, and the inhibition of HO-1 enhances the chemosensitivity of A549 cells to cisplatin.

A Unique Gene Expression Signature of 5-fluorouracil

  • Kim, Ja-Eun;Yoo, Chang-Hyuk;Park, Dong-Yoon;Lee, Han-Yong;Yoon, Jeong-Ho;Kim, Se-Nyun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.248-255
    • /
    • 2005
  • To understand the response of cancer cells to anticancer drugs at the gene expression level, we examined the gene expression changes in response to five anticancer drugs, 5-fluorouracil, cytarabine, cisplatin, paclitaxel, and cytochalasin D in NCI-H460 human lung cancer cells. Of the five drugs, 5-fluorouracil had the most distinctive gene expression signature. By clustering genes whose expression changed significantly, we identified three clusters with unique gene expression patterns. The first cluster reflected the up-regulation of gene expression by cisplatin, and included genes involved in cell death and DNA repair. The second cluster pointed to a general reduction of gene expression by most of the anticancer drugs tested. A number of genes in this cluster are involved in signal transduction that is important for communication between cells and reception of extracellular signals. The last cluster represented reduced gene expression in response to 5-fluorouracil, the genes involved being implicated in DNA metabolism, the cell cycle, and RNA processing. Since the gene expression signature of 5-fluorouracil was unique, we investigated it in more detail. Significance analysis of microarray data (SAM) identified 808 genes whose expression was significantly altered by 5-fluorouracil. Among the up-regulated genes, those affecting apoptosis were the most noteworthy. The down-regulated genes were mainly associated with transcription-and translation-related processes which are known targets of 5-fluorouracil. These results suggest that the gene expression signature of an anticancer drug is closely related to its physiological action and the response of caner cells.

Antioxidant and Anti-Proliferative Activities of Oats under Different Solvent Extraction Conditions (추출용매별 귀리의 항산화 및 암세포 증식 억제 활성)

  • Ham, Hyeonmi;Woo, Koan Sik;Park, Ji-Young;Lee, Byongwon;Choi, Yong-Hwan;Lee, Choonwoo;Kim, Wook Han;Lee, Junsoo;Lee, Yu-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.918-922
    • /
    • 2016
  • The objective of this study was to determine the antioxidant and anti-proliferative activities of methanol, ethanol, acetone, and ethyl acetate extracts from oats (Avena sativa L.). Total polyphenol contents of extracts were analyzed by Folin-Ciocalteu assay. The antioxidant activities of extracts were determined by 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities and reducing power. The anti-proliferative activities of colon (HCT116), lung (NCI-H460), and breast (MCF7) cancer cells were investigated. Among solvents, methanol extract showed the highest amount of total polyphenols, which was 8.2 mg gallic acid equivalents/g residue. High levels of ABTS radical [12.1 mg Trolox equivalent antioxidant capacity (TEAC)/g residue] and DPPH radical (4.4 mg TEAC/g residue) scavenging activity and reducing power ($A_{700}=0.39$) were found in methanol extracts. Moreover, methanol extracts indicated higher anti-proliferative activities against HCT116 (69.5%), NCI-H460 (75.2%), and MCF7 (84.8%) cells compared with other extracts. The results show that methanol was the best solvent for extraction of antioxidant and anti-proliferative compounds from oats. Moreover, notable antioxidant and anti-proliferative activities of oats could have significant health benefits.

PS-341-Induced Apoptosis is Related to JNK-Dependent Caspase 3 Activation and It is Negatively Regulated by PI3K/Akt-Mediated Inactivation of Glycogen Synthase Kinase-$3{\beta}$ in Lung Cancer Cells (폐암세포주에서 PS-341에 의한 아포프토시스에서 JNK와 GSK-$3{\beta}$의 역할 및 상호관련성)

  • Lee, Kyoung-Hee;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.5
    • /
    • pp.449-460
    • /
    • 2004
  • Background : PS-341 is a novel, highly selective and potent proteasome inhibitor, which showed cytotoxicity against some tumor cells. Its anti-tumor activity has been suggested to be associated with modulation of the expression of apoptosis-associated proteins, such as p53, $p21^{WAF/CIP1}$, $p27^{KIP1}$, NF-${\kappa}B$, Bax and Bcl-2. c-Jun N-terminal kinase (JNK) and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) are important modulators of apoptosis. However, their role in PS-341-induced apoptosis is unclear. This study was undertaken to elucidate the role of JNK and GSK-$3{\beta}$ in the PS-341-induced apoptosis in lung cancer cells. Method : NCI-H157 and A549 cells were used in the experiments. The cell viability was assayed using the MTT assay and apoptosis was evaluated by proteolysis of PARP. The JNK activity was measured by an in vitro immuno complex kinase assay and by phosphorylation of endogenous c-Jun. The protein expression was evaluated by Western blot analysis. Dominant negative JNK1 (DN-JNK1) and GSK-$3{\beta}$ were overexpressed using plasmid and adenovirus vectors, respectively. Result : PS-341 reduced the cell viability via apoptosis, activated JNK and increased the c-Jun expression. Blocking of the JNK activation by overexpression of DN-JNK1, or pretreatment with SP600125, suppressed the apoptosis induced by PS-341. The activation of caspase 3 was mediated by JNK activation. Blocking of the caspase 3 activation suppressed PS-341-induced apoptosis. PS-341 activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but its blockade enhanced the PS-341-induced cell death via apoptosis. GSK-$3{\beta}$ was inactivated by PS-341 via the PI3K/Akt pathway. Overexpression of constitutively active GSK-$3{\beta}$ enhanced PS-341-induced apoptosis; in contrast, this was suppressed by dominant negative GSK-$3{\beta}$ (DN-GSK-$3{\beta}$). Inactivation of GSK-$3{\beta}$ by pretreatment with lithium chloride or the overexpression of DN-GSK-$3{\beta}$ suppressed both the JNK activation and c-Jun up-regulation induced by PS-341. Conclusion : The JNK/caspase pathway is involved in PS-341-induced apoptosis, which is negatively regulated by the PI3K/Akt-mediated inactivation of GSK-$3{\beta}$ in lung cancer cells.

Cytotoxic Effects of Tenebrio molitor Larval Extracts against Hepatocellular Carcinoma (갈색거저리 유충 추출물의 간암세포에 대한 세포독성 효능)

  • Lee, Ji-Eun;Lee, An-Jung;Jo, Da-Eun;Cho, Ju Hyeong;Youn, Kumju;Yun, Eun-Young;Hwang, Jae-Sam;Jun, Mira;Kang, Byoung Heon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.2
    • /
    • pp.200-207
    • /
    • 2015
  • Various natural products or their derivatives, mostly originating from plants, fungi, and bacteria, have been exploited as therapeutic drugs to treat various human diseases. In addition to previously explored organisms, research on natural compounds has now expanded into unexamined living organisms in order to identify novel bioactive substances. Here, we determined whether or not the larval form of the mealworm beetle Tenebrio molitor, a species of darkling beetle, contains cytotoxic substances that exclusively affect cancer cell viability. Ethanol extract and its solvent partitioned fractions, hexane and ethyl acetate fractions, showed anticancer effects against various human cancer cells derived from the prostate (PC3 and 22Rv1), cervix (HeLa), liver (PLC/PRF5, HepG2, Hep3B, and SK-HEP-1), colon (HCT116), lung (NCI-H460), breast (MDA-MB231), and ovary (SKOV3). Cell death induced by the fractions was a mix of apoptosis, necrosis, and autophagy. The hexane fraction was administered intraperitoneally to nude mice bearing a hepatocellular carcinoma SK-HEP-1 and showed inhibition of tumor growth in vivo. Therefore, we concluded that worm extracts contain cytotoxic substances, which can be enriched by proper fractionation protocols, and further separation and purification could lead to the identification of novel molecules to treat human cancers.