• Title/Summary/Keyword: NC milling

Search Result 133, Processing Time 0.032 seconds

Determination of Tool Orientation in 5-Axis Milling Using Potential Energy Method (포텐셜 에너지를 이용한 5축 NC 밀링의 공구방향 결정)

  • Cho, Inhaeng;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.161-167
    • /
    • 1996
  • In five-axis milling, optimal CL-data (cutter location data) should be generated to have advantages over three-axis milling in terms of accuracy and efficiency. This paper presents an algorithm for generating collision-free CL-data for five-axis milling using potential energy method. By virtually charging the cutter and part surfaces with static electricity, global collision as wells as local interference is eliminated. Additionally, machining efficiency is improved by minimizing the curvature difference between the part surface and tool swept surface at a CC-point (cutter contact point) simultaneously.

  • PDF

Automated machinability checking for sculptured surface manufacture

  • Kim, Kwangsoo;Ko, Byungchul
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1992.04b
    • /
    • pp.299-308
    • /
    • 1992
  • Determining tool-approach directions is an important issue when an effort is made to transfer CAD data into manufacturing automatically. An algorithm is developed to determine whether a given part can be machined on a three-axis milling machine. lf a set of feasible tool-approach directions exists for a sculptured surface, the NC tool path and G-codes for machining the surface on a three-axis milling machine can be generated automatically by an NC tool path generation algorithm. The algorithm can be used for orientation and fixturing of the workpiece for interference free machining. The algorithm can also be applied to checking the translational separability of polyhedral parts in automatic assembly.

  • PDF

Verification of Workpiece in Ball End Milling (볼엔드밀 가공에서의 가공물 검증)

  • 백대균;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.725-729
    • /
    • 2000
  • This paper presented a new model of NC verification in ball end milling. The model verifies the over cut the under cut and the surface roughness using NC file generated from CAM and cutting condition. The model uses Z-map model to verify workpiece. In this paper, the model used the velocities of x, y and z direction and obtained a center point of a ball end mill for modeling Z-map of workpiece. To investigate the performance of the model simulation study was carried out. As the results, the model gave geometry accuracy of workpiece, the surface roughness and the chip loads in finish cutting that can predict tool chipping.

  • PDF

Multi-stage NC Milling of Uncut Volume caused by Gouging Interference at the Machining of Curved Surfaces (곡면가공시 공구간섭에 따른 미절삭체적의 다단계 NC가공)

  • 맹희영;차지경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.439-444
    • /
    • 2004
  • A new efficient intelligent machining strategy named the Steepest Directed Tree method is presented in this study, which makes surface model discrete with triangulation meshes and the cutter paths track along the tree directions. In order to formulate these algorithms practically, it is deduced the multi-stage machining approach of uncut volume caused by cutter gouging in the course of milling using flat end mill. It is systematized the checking process the cutter interference by grouping the 6 kinds of gouging types, which yields the environment of connectivity data lists including CL-data, and then the multi-stage machining strategy, that minimizes uncut area by continuously sequencing the generative subsequent CL-paths, is shamed to determine the second tool path for the next uncut area and to compose the operating multi-stage cutting processes. The completed machining system of curved surfaces is evaluated by testing the practical machining experiments which have various kinds of shape conditions.

  • PDF

CAD/CAM System Development for Automatic Creation and Manufacturing of Three Dimension Objects (입체 형상의 자동생성 및 가공을 위한 CAD/CAM 시스템 개발)

  • 조성철
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.54-60
    • /
    • 1993
  • The purpose of this study is to develop a CAD/CAM system for automatic creation and manufacturing of three dimension objects. The computer system used in this study made RAM 2M, CPU 80386, VGA graphic card. The results in this paper are as follows ; 1. By interconnect PC(personal computer) and NC(numerical control) milling machine with RS232C connector, we was constructed with CAD/CAM system. 2. The developed algorithm in this study is able to be design of three dimension object on the computer CRT and manufacturing of NC milling machine. 3. Because of design and modifying on the PC of objects, we can be saving time, cost and improvable precision of objects. 4. Essentially, we expect industrial accident to reduse according as we takes advantage of CAD/CAM system.

  • PDF

Optimal Tool Length Computation of NC Data for 5-axis Ball-ended Milling (5축 볼엔드밀 가공 NC 데이터의 최적 공구 길이 계산)

  • Cho, Hyeon-Uk;Park, Jung-Whan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.5
    • /
    • pp.354-361
    • /
    • 2010
  • The paper presents an efficient computation of optimal tool length for 5-axis mold & die machining. The implemented procedure processes an NC file as an initial input, where the NC data is generated by another commercial CAM system. A commercial CAM system generates 5-axis machining NC data which, in its own way, is optimal based on pre-defined machining condition such as tool-path pattern, tool-axis control via inclination angles, etc. The proper tool-length should also be provided. The tool-length should be as small as possible in order to enhance machinability as well as surface finish. A feasible tool-length at each NC block can be obtained by checking interference between workpiece and tool components, usually when the tool-axis is not modified at this stage for most CAM systems. Then the minimum feasible tool-length for an NC file consisting of N blocks is the maximum of N tool-length values. However, it can be noted that slight modification of tool-axis at each block may reduce the minimum feasible tool-length in mold & die machining. This approach can effectively be applied in machining feature regions such as steep wall or deep cavity. It has been implemented and is used at a molding die manufacturing company in Korea.

An unified rough and finish cut algorithm for NC machining of free form pockets with general polygon - Part 2. Experiment (일반적인 내벽을 가진 자유바닥 곡면 파켓의 NC 가공을 위한 단일화된 황삭과 정삭 알고리즘 - Part 2. Experiment)

  • Choi, Yong-Hoon;Kim, Sang-Jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.1
    • /
    • pp.46-53
    • /
    • 2007
  • NC (Numerical Control) code for the tool path needs to be generated efficiently for machining of free form pockets with arbitrary wall geometry on a three axis CNC machine. The unified rough and finish cut algorithm and the tool motion is graphically simulated in Part 1. In this paper, a grid based 3D navigation algorithm simulated in Part 1 for generating NC tool path data for both linear interpolation and a combination of linear and circular interpolation for three-axis CNC milling of general pockets with sculptured bottom surfaces is experimentally performed and verified.

  • PDF

Active vision을 이용한 곡면의 형상정보 획득 및 NC가공 시스템

  • 손영태;최영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.256-261
    • /
    • 1992
  • Acquisition of 3D points is an essential process for modelling of physical 3D objects. Although Coordinate Measuring Machine(CMM) is most accurate for this purpose, it is very time consuming. To enhance the data aquisition speed for scuptured surfaces, active vision with reflecctometric method was used for our system. A fter the data acquisition, the system automatically generates cutting tool path for the 3-axis milling of the object. The fullyintegrated system from the data acquisition to the NC-code generation was implemented with IBN-PC/386 and necessary hardwears.

Four-axis CAM module for NC machining of rotational-free-surface (회전형상의 자유곡면가공을 위한 4축 CAM 모쥴의 개발)

  • 서석환;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.175-180
    • /
    • 1990
  • Rotational-free-surface (RFS) is a special type of free surface whose two boundaries coincide. For NC machining of PFS, a rotational axis as well as three Cartesian axes are required. In this paper, we develop a four-axis CAM module consisting of: a) Geometric modeling of RFS, b) CL-data generation, and c) Graphic simulation of machining operation. To test the validity and effectiveness of the developed module, several test cuts are made with Bridgeport CNC milling machine and compared with the graphic simulation.

  • PDF

A Study on the NURBS Interpolator for the Precision Control of Wire-EDM (와이어컷 방전가공기의 정밀제어를 위한 NURBS 보간기에 관한 연구)

  • 박진호;남성호;정태성;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.143-151
    • /
    • 2004
  • This paper deals with the precision NURBS interpolator for wire-EDM. Previous research about OAC (Open Architecture Controller) is mostly aimed at NC cutting machines such as milling or lathes, and hence these results are inadequate to apply to wire-EDM. In contradiction to NC machines, wire-EDM operates relatively slow feed rates and based on a feedback control loop to the machining process. The 2-stage interpolation method which reflects wire-EDM specific characteristics was proposed. The constant interpolation error could be acquired through 1 st stage interpolation. Feed rate regulation was performed through 2nd stage interpolation. The suggested algorithm was implemented to test-bed PC-NC system. Computer simulations and the experimental machining were conducted.