• Title/Summary/Keyword: NC Turning

Search Result 34, Processing Time 0.024 seconds

Proposal Model for Programming Numerical Control Lathe Basis on the Concept by Features

  • N.Ben Yahia;Lee, Woo-Young;B. Hadj Sassi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.27-33
    • /
    • 2001
  • The aim of the present work is to propose a model for Computer Aided programming of numerical Control lathe. This model is based on the concept by features. It has been developed in an Artificial Intelligence environment, that offers a rapidity as well as a precision for NC code elaboration. In this study a pre-processor has been elaborated to study the geometry of turning workpiece. This pre-processor is a hybrid system which combine a module of design by features and a module of features recognition for a piece provided from an other CAD software. Then, we have conceived a processor that is the heart of the CAD/CAM software. The main functions are to study the fixture of the workpiece, to choose automatically manufacturing cycles, to choose automatically cutting tools (the most relevant), to simulate tool path of manufacturing and calculate cutting conditions, end to elaborate a typical manufacturing process. Finally, the system generates the NC program from information delivered by the processor.

  • PDF

Cycle Reduction Simulation for Turning Process (선삭 가공 사이클 단축 시뮬레이션)

  • Kim, Sun-Ho;Cho, Hang-Deuk;Kim, Tae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Productivity of machining using machine tools is affected by cutting conditions such as cutting speed, feedrate and depth. However, undesirable conditions that lengthen the machining cycle and shorten the tool life occur frequently because determination of cutting condition is known to depend on human experience. This paper presents a method of cycle reduction by removing undesirable conditions. For cycle reduction, maximum cutting load is determined using commercial FEM simulation code. The feedrate in the NC program is altered based on a predetermined cutting load value. To make a decision on the proposed effectiveness, a simulation is performed for the brake hub parts of an automobile. From the evaluation, it was found that the cycle reduction was under 15%.

Development of a Tool Management System for Turning Machine (선반 가공자동화를 위한 공구관리 시스템의 개발)

  • Kim, Cheol-Han;Kim, Eun-Yeob;Kim, Kwang-Soo;Kim, Sunh-Ho;Lee, Choon-Shik
    • IE interfaces
    • /
    • v.3 no.2
    • /
    • pp.13-22
    • /
    • 1990
  • The efficient and economical use of an FMS presupposes a good capability : flexibility, reliability, maintainability and built-in quality assurance. One subsystem of an FMS, which often increases capability, is the tooling management. The main problems associated with tooling in an FMS are large variety of tools, many setups, insufficient use of presetted tools, tool condition control, tool shortages, errors in tooling data and maintainence. This paper presents a reseach on the development of a system which manages the tool data for the factory using NC turning machines. The tool information concerning each production stages of the industry is studied in the CIM(Computer Integrated Manufacturing) view point.

  • PDF

Analysis of Surface Roughness by FFT Analyzer in Turning Operation (선반작업(旋盤作業)에서의 FFT Analyzer에 의한 표면(表面)거칠기 해석(解析))

  • Kim, Gyung-Nyun;Choi, Eun-Soon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.3
    • /
    • pp.12-19
    • /
    • 1992
  • This paper shows that the identified and unidentified components of surface roughness in NC turning lathe which can not be analyzed in time domain such as $R_{max},\;R_a$ can be isolated in frequency domain by FFT analyzer. By interfacing FFT analyzer with stylus surface roughness instrument, surface roughness on change of working condition, especially tool feed, such as 0.1, 0.15, 0.2, 0.25, 0.3(mm/rev) can be analyzed in frequency domain as follows. 1. By frequency analysis of surface roughness profile, the basic wave length of surface roughness can be obtained to isolate the identified and unidentified components of surface roughness. 2. With increase of tool feed, the unidentified components of surface roughness increase. 3. Since $R_{max}$, which can be obtained by stylus surface roughness is proportion to the output voltage of FFT analyzer, FFT analyzer also can be used to measure surface roughness in time domain such $R_a,\;R_{max}$.

  • PDF

Rule based CAD/CAM integration for turning (Rule base방법에 의한 선반가공의 CAD/CAM integration)

  • 임종혁;박지형;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.290-295
    • /
    • 1989
  • This paper proposes a Expert CAPP System for integrating CAD/CAM of rotational work-part by rule based approach. The CAD/CAPP integration is performed by the recognition of machined features from the 2-D CAD data (IGES) file. Selecting functions of the process planning are performed in modularized rule base by forward chaining inference, and operation sequences are determined by means of heuristic search algorithm. For CAPP/CAM integration, post-processor generates NC code from route sheet file. This system coded in OPS5 and C language on PC/AT, and EMCO CNC lathe interfaced with PC through DNC and RS-232C.

  • PDF

Determination of Optimal Machining Parameters Using Genetic Algorithm (유전자 알고리즘을 이용한 최적의 가공 조건 결정)

  • Choi, K.H.;Yook, S.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.63-68
    • /
    • 1999
  • The determination of the optimal machining parameters in metal cutting, such as cutting speed, feed rate, and depth of cut, is an important aspect in an economic manufacturing process. The main objective in general is either to minimize the production cost or to maximize the production rate. Also there are constraints on all the machining operations which put restrictions on the choice of the machining parameters. In this paper as an objective function the production cost is considered with two constraints, surface finish and cutting power. Genetic Algorithm is applied to determine the optimum machining parameters, and the effectiveness of the applied algorithm is demonstrated by means of an example, turning operation.

  • PDF

A Study on the Machining of Cam Profile Part by Basic Interpolation Method (Biarc 곡선보간에 의한 캠 부품형상 가공에 관한 연구)

  • 정창영;김영국;윤문철;심성보;하만경;김광희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.975-978
    • /
    • 2001
  • For machining auto-mobile cam, the developed biarcs-fitting method eliminates the ridge problems in conventional straight-line fitting approximation or single-arc fitting of curve tool path where it leaves ridges of tool marks on the machined surface of the workpiece. The powerful advantage of this biarc method is demonstrated by applying it to the numerically controlled machining of a curved cam profile, also verified by using a CNC simulating program for auto-mobile cam profile. As a result, this algorithm may be used in CNC milling and turning for cam profile machining with short block line.

  • PDF

Hybrid Machine with Open Architecture Controller (개방형 CNC를 응용한 하이브리드 머신 개발)

  • 김선호;김동훈;박정환;고태조;구태중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.338-342
    • /
    • 2003
  • Hybrid machine is based on hardware technologies of machine tool and software technologies of open architecture controller. In machining technology, combination technology of turning, milling, and grinding and in machining energy technology. combination of mechanical, electrical, and chemical technology are developed. This paper describes hybrid machine technology for combination of machining, on-machine measurement, on-machine CAM, and on-machine remote monitoring and control in open architecture controller environment. For on-machine measurement, non-contact measurement technology based on CAD information is developed. For on-machine CAM, interactive CAM program for automatic NC program generation and tool path simulation is developed. For generation on-machine remote monitoring and control, suitable interface method between web program and CNC is proposed. The developed hybrid machine technology is implemented in 3 axes milling machine for evaluation of operablity.

  • PDF

A Study on the Correlation between Machinability and the Cutting Condition in Machining Aluminum Alloy (알루미늄합금 절삭시 절삭성과 절삭조건의 상관성에 관한 연구)

  • Oh, Seok-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.56-62
    • /
    • 2004
  • Using NC or CNC machine tool, the unmanned automatic production system has been growing recently in the manufacturing field. Thus it is important to find out the machinability of cutting force, tool wear and surface roughness during the cutting process. It is necessary to find how to estimate the machinability for the effective cutting condition because of problem about cutting power, tool wear, cutting time and precision. This study was planned to discover the relations of tool wear by variations of roughness and derived to correlate the wear with the surface roughness on the cutting parameter(cutting force, flank wear, surface roughness, friction angle, shear angle, slenderness ratio) when the aluminum alloy was cut in turning.

  • PDF

Adaptive Optimization of Turning Operation Using a GAs (유전알고리듬을 이용한 선삭공정의 적응최적화)

  • 김도균;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.806-811
    • /
    • 1994
  • 최근의 절삭가공 생산시스템은 무인자동화,고속화,정밀화로 대별되면서 생산성을 극대화시킬려는 방향으로 연구 가 진행되고 있다. 종래의 CNC화된 기계가공시스템에서는 절삭속도,이송속도 그리고 절삭깊이 등과 같은 절삭 조건은 On-line으로 조절되는 장치를 갖지 않고 Off-line으로 프로그래머의 경험이나 절삭가공의 데이터 핸드북을 통하여 결정되어진다. 이러한 절삭조건은 절삭률 즉 생산성의 측면에서 최적의 값이 될 수가 없다. 이는 프로그래머가 측면에서 최적의 값이 될 수가 없다. 이는 프로그래머가 공구의 마모나 표면거칠기, 또는 공작기계의 부하 등을 고려하여 극적으로 NC프로그램을 짜기 때문이다. 이러한 문제점 때문에 현재 개발되어지고 있는 대부분의 적응제어시스템은 실용화가 되지못하고 있는 실정이어서 효휼적인 적응시스템의 개발은 필수적이다. 따라서 본 연구에서는 무인자동화 가공시스템에서 생산성을 최대화하기 위하여 사용하는 ACO 시스템에서 발생하는 상기의 문제를 해결하여 실용화할 수 있는 가공 최적화 시스템을 개발함을 연구의 목적으로 하고 있다.

  • PDF