• Title/Summary/Keyword: NC Machine

Search Result 393, Processing Time 0.029 seconds

5-Axis CNC Machining of Roller Gear Cam (롤러 기어 캠의 5-축 CNC 가공)

  • Cho, Hyun-Deog;Yoon, Moon-Chul;Kim, Kyung-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.739-745
    • /
    • 2010
  • The roller gear cam can control the rotational follower periodically by attaching several roller on the circumstance of follower shaft and it is widely used in non-backlash and precise actuating mechanism such as index table or ATC of machine tools. For machining the roller gear cam, 5 axis CNC machine tool is used and the geometric principle of CAM mechanism must be adopted to generate the NC-code and to develop the special CAD/CAM software because there is not commercial CAM system to machine the roller gear cam. The maker of the specially developed software in domestic user is generally from Japan or Taiwan. However these softwares do not reflect the post processing technique for finish machining in the module. Also, there is some limitation for further new application of itself and it needs higher costs for further application. In this study, the CAD/CAM software to overcome these problem was developed. And its reliability was verified by applying it in 5-axis CNC machining. Finally, the experimental result conducted in the 5-axis machining show good consistency in the movement of follower along the flute and in its Size.

Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine

  • Khatibinia, Mohsen;Feizbakhsh, Abdosattar;Mohseni, Ehsan;Ranjbar, Malek Mohammad
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1065-1082
    • /
    • 2016
  • The main aim of this study is to predict the compressive and flexural strengths of self-compacting mortar (SCM) containing $nano-SiO_2$, $nano-Fe_2O_3$ and nano-CuO using wavelet-based weighted least squares-support vector machines (WLS-SVM) approach which is called WWLS-SVM. The WWLS-SVM regression model is a relatively new metamodel has been successfully introduced as an excellent machine learning algorithm to engineering problems and has yielded encouraging results. In order to achieve the aim of this study, first, the WLS-SVM and WWLS-SVM models are developed based on a database. In the database, nine variables which consist of cement, sand, NS, NF, NC, superplasticizer dosage, slump flow diameter and V-funnel flow time are considered as the input parameters of the models. The compressive and flexural strengths of SCM are also chosen as the output parameters of the models. Finally, a statistical analysis is performed to demonstrate the generality performance of the models for predicting the compressive and flexural strengths. The numerical results show that both of these metamodels have good performance in the desirable accuracy and applicability. Furthermore, by adopting these predicting metamodels, the considerable cost and time-consuming laboratory tests can be eliminated.

Development of CAM system for 5-axis automatic roughing machine Based on Reverse Engineering (역공학 기반 5축 신발 러핑용 CAM 시스템 개발)

  • Kim Hwa Young;Son Seong Min;Ahn Jung Hwan;Kang Dong Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.122-129
    • /
    • 2005
  • Shoe with leather upper such as safety and golf shoe requires a roughing process where the upper is roughed fur helping outsole to be cemented well. It is an important and basic process for production of leather shoe but is not automated yet. Thus, there are problems that the defect rate is high and the quality of roughed surface is not uniform. In order to solve such problems, the interest in automation of roughing process is being increased and this paper introduces CAM system for 5-axis automatic roughing machine as one part of automation of roughing process. The CAM system developed interpolates a B-spline curve using points measured from the Roughing Path Measurement System. The B-spline curve is used to generate the tool path and orientation data fer a roughing tool which has not only stiffness but also flexibility to rough the inclined surface efficiently. For productivity, the upper of shoe is machined by side of the roughing tool and tool offset is applied to the roughing tool for machining of inclined surface. The generated NC code was applied to 5-axis polishing machine for the test. The upper of shoe was roughed well along the roughing path data from CAM and the roughed surface was proper fur cementing of the outsole.

A Study on the Machining of Sculptured Surfaces by 5-Axis CNC Milling (l) Cutter Axis Direction Verctor and Post-Processing (5-축 CNC 밀링으로의 자유곡면 가공에 관한 연구 (I) 공구축 방향의 벡터와 포스트 프로세싱)

  • 조현덕;전용태;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2001-2011
    • /
    • 1993
  • This study deals with the machining of sculptured surfaces on 5-axis CNC milling machine with end mill cutter. The study (I) has the following contents. In 5-axis CNC milling, CL-data consist of CC-data and cutter axis direction vector at the CC-point. Thus, in machining of the sculptured surface on 5-axis CNC milling machine, determination of the direction vector of the milling cutter is very important. The direction vector is obtained by the fact that bottom plane of the milling cutter must not interfere with the free-form surface being machined. The interference is checked by the z-map method which can be applied in all geometric types of the sculptured surfaces. After generating NC part programs from 5-axis post-processing algorithms, sculptured surfaces were machined with 5-axis CNC milling machine (CINCINNATI MILACRON, 20V-80). From these machining tests, it was shown that the machining of the free-form surfaces on 5-axis CNC milling machine with the end mill has smaller cusp heights and shorter cutting time than on 3-axis CNC milling machine with the ball-end mill. Thus, 5-axis CNC end milling was effective machining method for sculptured surfaces. The study (II) deals with the prediction of cusp height and the determination of tool path interval for the 5-axis machining of sculptured surfaces on the basis of study(I).

Development of water cropping machine for slab pattern processing (석판재용 물다듬 패턴무늬 가공 전용기 개발)

  • Kim, Kyoung-Chul;Ko, Min-Hyuc;Kim, Jong-Tae;Lee, Ji-Su;Ryuh, Beom-Sahng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4130-4135
    • /
    • 2013
  • This paper is a special-purpose machine studies for processing various patterns on the surface of the stone. We have developed a special-purpose machine that can be applied in various patterns upon the surface treatment of the stone with the water jet. The special-purpose machine is Configured of Transfer mechanism, motion controller, multi-nozzle mechanism, ultra high pressure water control system and S/W. We conducted a performance evaluation experiments of the pattern. We have developed a special-purpose machine with a precision of machining error ${\pm}0.5mm$ and pattern processing of various types.

Circular Path Generation Technique for Ball Bar Measurement by Simultaneous Movement of Two Axes (2 축 동시구동을 통한 볼바 측정용 원호경로 생성 방법)

  • Lee, Dong-Mok;Lee, Hoon-Hee;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.783-790
    • /
    • 2013
  • Circular path generation for ball bar measurement using the simultaneous movement of two axes with at least one rotary axis requires the execution of CAM software. However, a change in the machine type or measurement condition requires a new execution of the CAM software, which is cumbersome. This paper presents a circular path generation technique that does not require CAM software and is applicable to different types of driving axes with an arbitrary structural configuration of machine tools and any ball bar setup condition. Mathematical equations are derived for three cases using the proposed technique. In addition, to inspect the measurement feasibility for avoiding physical interference among the ball bar parts, a tilting angle calculation is proposed. The validity of the proposed technique was verified by performing a ball bar experiment with A and C as the simultaneous axes of a five-axis machine tool.

Development of In-Process Polishing Pressure Control System (실시간 폴리싱 압력 제어시스템 개발)

  • 오창진;전문식;김옥현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.109-115
    • /
    • 2004
  • Polishing process has been applied to get extremely fine surfaces, e.g., mirror surfaces such as optical mirrors, lens, molds and etc. Nowadays not only fine surface quality but also submicron order of dimensional accuracy is required for many applications. To meet the requirements polishing process should be provided with an active control of polishing pressure especially for automation of polishing process. In this paper a study on development of an active polishing pressure control system has been presented. A new type of tool assembly has been developed to facilitate the control. The tool is attached to an axis of a polishing machine with a coil spring and control of the polishing pressure is done by the position control of the axis, which needs no additional actuator. The polishing pressure is successfully measured by the measurement of the spring deformation. Control specifications were quantitatively considered by weighting functions and a controller was designed by using loop-shaping technique based on the no synthesis. Some experiments have been executed on a polishing machine with a PC-NC controller. It is shown that the results were coincident well with the theoretical analyses and satisfied the design specifications.

Five-axis CL Data Generation by Considering Tool Swept Surface Model in Face Milling of Sculptured Surface (공구이동궤적 모델을 이용한 5축 페이스밀링 가공데이터 생성)

  • 이정근;박정환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.35-43
    • /
    • 2004
  • It is well known that the five-axis machining has advantages of tool accessibility and machined surface quality when compared with conventional three-axis machining. Traditional researches on the five-axis tool-path generation have addressed interferences such as cutter gouging, collision, machine kinematics and optimization of a CL(cutter location) or a cutter position. In the paper it is presented that optimal CL data for a face-milling cutter moving on a tool-path are obtained by incorporating TSS(tool swept surface) model. The TSS model from current CL position to the next CL position is constructed based on machine kinematics as well as cutter geometry, with which the deviation from the design surface can be computed. Then the next CC(cutter-contact) point should be adjusted such that the deviation conforms to given machining tolerance value. The proposed algorithm was implemented and applied to a marine propeller machining, which proved effective from a quantitative point of view. In addition, the algorithm using the TSS can also be applied to avoid cutter convex interferences in general three-axis NC machining.

Development of Online Realtime Positioning Error Compensation System for CNC Machine Tools (CNC 공작기계용 온라인 실시간 위치오차 보정시스템의 개발)

  • Chung, Chae-Il;Kim, Jong-Won;Nam, Weon-Woo;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.45-52
    • /
    • 1999
  • The online realtime positioning error compensation system 'SKY-PACS' is developed to correct geometric errors, thermal errors and tool deflection errors induced by cutting forces on the vertical machining center. 'SKY-PACS' communicates position commands and position compensation signals with the CNC controller at 100Hz, which is CNC control frequency. So the compensation procedure can be applied during axis movement. Using 'SKY-PACS', Maximum 1 axis positioning accuracy was corrected from 5{\mu}m$ to 2{\mu}m$and the squareness error of X-Y table was corrected from 51{\mu}m$/m to below 4{\mu}m$/m. The error compensation under the cutting condition is carried out by ISO10791-7. And the measurement of test-pieces shows that the roundness is corrected rom 8{\mu}m$ to below 5{\mu}m$.

  • PDF

The RMS Characteristics of Cutting Force Depending on the Tool Wear (공구마멸에 따른 절삭력의 RMS특성)

  • 권용기;오석형;김동현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2214-2222
    • /
    • 1993
  • With the use of the NC machine tool, the unmanned production system has been growing recently in the manufacturing field. This there are problems with monitoring adequate tool fracture during the cutting process efficiently. This study was planned and carried out to discover a way of monitoring tool condition in NO-LINE systems during the cutting process. The acquisition of data in cutting force and tool wear has been made in the section examined, to extract the RMS value of the cutting force as specific factors in the cutting process. The fluctuation of the RMS characteristics. From the results, it has been shown that the fluctuation of the RMS values for the cutting force has a close relation to flank wear.