• Title/Summary/Keyword: NBO

Search Result 51, Processing Time 0.022 seconds

Ab Initio and Experimental Studies on Dibenzothiazyl-Disulfide

  • Jian, Fang-Fang;Zhang, Ke-Jie;Zhao, Pu-Su;Zheng, Jian
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.1048-1052
    • /
    • 2006
  • Ab initio calculations of the structure, atomic charges and natural bond orbital (NBO) have been performed at HF/6-311G** and B3LYP/6-311G** levels for the title compound of dibenzothiazyl-disulfide. The calculated results show that the two nitrogen atoms have the biggest negative charges and they are the potential sites to react with the metallic ions, which make the title compound become a di-dentate ligand. Vibrational frequencies of the title compound have been obtained and compared with the experimental value and the comparison indicates that B3LYP/6-311G** level is better than HF/6-311G** level to predict the vibrational frequencies for the system studied here. For the title compound, electronic absorption spectra calculated by time?ependent density functional theory (TD-DFT) are more accurate than Hartree-Focksingle-excitation CI (CI-Singles) method. NBO analyses show that the electronic transitions are mainly derived from the contribution of bands $\pi\rightarrow\pi^{*}$. Thermodynamic calculated results show that the formation of the title compound from 2-mercaptobenzothiazole is a spontaneous process at room temperature with the change of free Gibbs being negative value.

Lipid Peroxidation in Vivo Monitored as Ethane Exhalation in Hyperoxia (호기중 에탄(ethane)측정을 통한 산소중독시 지질과산화평가에 관한 실험적 연구)

  • Song, Jae-Cheol;Cho, Soo-Hun;Chung, Myung-Hee;Yun, Dork-Ro
    • Journal of Preventive Medicine and Public Health
    • /
    • v.20 no.2 s.22
    • /
    • pp.221-227
    • /
    • 1987
  • In vivo ethane production in rats was used as an index of oxygen toxicity. The rats were allocated to four exposure conditions; hyperbaric oxygenation (HBO=5 ATA, 100% $O_2$), normobaric oxygenation (NBO=1 ATA,100% $O_2$), hyperbaric aeration (HBA=5 ATA, 21% $O_2$) and normobaric aeration (NBA=1 ATA, 21% $O_2$). After 120 minutes of exposure, the rats exposed to high concentration and/or high pressure oxygen exhaled significantly larger amounts of ethane than those exposed to NBA, and the differences in ethane production between any two groups were statistically significant (p<.01). This finding supports the hypothesis that hyperoxia increases oxygen free-radicals and the radicals produce ethane as a result of lipid peroxidation. It is notable that the ethane exhalation level of the HBA group was significantly higher than that of the NBO group. This difference could not be accounted for by the alveolar oxygen partial presure difference between the two groups.

  • PDF

Density Functional Theoretical Study on Intermolecular Interactions of 3,6-Dihydrazino-1,2,4,5-tetrazine Dimers

  • Hu, Yin;Ma, Hai-Xia;Li, Jun-Feng;Gao, Rong;Song, Ji-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2897-2902
    • /
    • 2010
  • Seven fully optimized geometries of 3,6-dihydrazino-1,2,4,5-tetrazine (DHT) dimers have been obtained with density functional theory (DFT) method at the B3LYP/$6-311++G^{**}$ level. The intermolecular interaction energy was calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction energy of the dimers is $-23.69\;kJ{\cdot}mol^{-1}$. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. Based on the vibrational analysis, the changes of thermodynamic properties from the monomers to dimer with the temperature ranging from 200.0 K to 800.0 K have been obtained using the statistical thermodynamic method. It was found that the hydrogen bonds dominantly contribute to the dimers, while the binding energies are not only determined by hydrogen bonding. The dimerization process can not occur spontaneously at given temperatures.

Oxygen Sites in Quaternary Ca-Na Aluminosilicate Classes : O-17 Solid-State NMR Study (사성분계 비정질 Ca-Na 알루미노규산염의 산소주변의 원자구조 : O-17 고상핵자기 공명분광학분석)

  • Sung, So-Young;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.347-353
    • /
    • 2006
  • The atomic-nano scale structures of multi-component aluminosilicate glasses have not been well understood in spite of its implications fur dynamics and generation of magma in the natural system due to lack of suitable spectroscopic and scattering experiments. Here, we report O-17 MAS and isotropic projection of 3QMAS NMR spectra for quaternary Na-Ca silicate glasses $[(CaO)_x(Na_2O)_{1-x}]\;(A1_2O_3)_{0.5}(SiO_2)_6,\;CNAS)$ at 14.1 Tesla where atomic configurations around bridging oxygen (Si-O-Si, Si-O-Al) and non bridging oxygen (Na-O-Si, Ca-O-Si, (Na, Ca)-O-Si) are partially resolved. With increasing Na content, the fraction of Na-O-Si increases while those for bridging oxygens remain constant. The Na/Ca ratio apparently affects the peak widths of bridging oxygen peaks (e.g., Si-O-Si)) and thus the topological entropy as well as chemical shifts of the bridging oxygen peaks, implying that both BOs and NBOs are strongly interacting with network modifying cations The effect of cation field strength on the degree of Al-avoidance was also discussed.

Anomalous Behavior of the Ethyl Group in the Aminolysis of S-Phenyl Acetate with Benzylamine in Acetonitrile

  • Lee, Ik-Choon;Lee, Hai-Whang;Lee, Byung-Choon;Choi, Jin-Heui
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.201-204
    • /
    • 2002
  • The rates of the aminolysis of S-phenyl substituted-acetate series $(RC(=O)SC_6H_4Z$, with R=Me, Et, i-Pr, t-Bu and Bn) with benzylamines $(XC_6H_4CH_2NH_2)$ are not correlated simply with the Taft's polar $({\sigma}^{\ast})$ and/or steric effect constants $(E_s)$ of the substituents due to abnormally enhanced rate of the substrate with R=Et. Furthermore, the cross-interaction constant, ${\rho}x_z$ , is the largest with R=Et. These anomalous behaviors can only be explained by invoking the vicinal bond $({\sigma})$-antibond $({\sigma}^{\ast})$ charge transfer interaction between C-$C{\alpha}$ and C-S bonds. In the tetrahedral zwitterionic intermediate, $T^{\pm}$ , formed with R=Et the vicinal ${\sigma}_{c-c}-{\sigma}^{\ast}_{c-s}$ delocalization is the strongest with an optimum antiperiplanar arrangement and a narrow energy gap, ${\Delta}{\varepsilon}={\varepsilon}_{{\sigma}^{\ast}}-{\varepsilon}_{\sigma}$. Due to this charge transfer interaction, the stability of the intermediate increases (with the concomitant increase in the equilibrium constant K (= $k_a/k_{-a}$)) and also the leaving ability of the thiophenolate leaving group increases (and hence $k_b$ increases) so that the overall rate, $k_n\;=\;Kk_b$, is strongly enhanced. Theoretical support is provided by the natural bond orbital (NBO) analyses at the B3LYP/6-31+$G^{\ast}$ level. The anomaly exhibited by R=Et attests to the stepwise reaction mechanism in which the leaving group departure is rate limiting.

A Study on The Effect of Hyperoxia on EKG Findings of Rabbits (과다산소조건이 가토의 심전도상에 미치는 영향에 관한 연구)

  • Lee, Soo-Jin;Song, Jae-Cheol;Park, Hung-Bae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.25 no.1 s.37
    • /
    • pp.34-43
    • /
    • 1992
  • To investigate the effect of hyperoxia on EKG findings and to evaluate the applicability of EKG as noninvasive monitoring index of oxygen toxicity, 38 rabbits were continuously exposed to 6 different conditions-3 hyperbaric oxygenations (HBO-2.5, 3.5 and 5ATA, 100% $O_2$), normobaric oxygenation (NBO,100% $O_2$), hyperbaric aeration (HBA-5ATA, 21% $O_2$) and normobaric aeration (NBA, 21% $O_2$)-for 120 minutes and their EKG and time to dyspnea and convulsion were recorded. Dyspnea and death were observed in exposure conditions of HBO-3.5 and HBO-5 (Positive rate of dyspnea 10%, 100%, death : 10%, 25%, respectively) only, and convulsion in 4 oxygenation groups (NBO;20%, HBO-2.5;20%, HBO-3.5;20%, HBO-5;88%). Abnormal EKG findings included arrhythmia and ST-T changes and the incidences was increasing with doses(partial pressure of oxygen). In addition to EKG change, findings observed during exposure were dyspnea and convulsion in the order of appearance and when non specific ST-T change was accepted as positive(abnormal) finding, the frequency of abnormal EKG was statistically significant(p<0.01), but when it was excluded from positive results, the frequency of EKG change was not significant(p>0.05). These results suggest that the effect of hyperoxia on heart is myocardial ischemia and arrhythmia, that oxygenation more than 3.5ATA causes myocardial damage in 120 minutes exposure, and that EKG is valuable as monitoring index of oxygen toxicity.

  • PDF

Ab initio and DFT Study for the Internal Rotations of Cyclopropyldifluoroborane Molecule (Cyclopropyldifluoroborane 분자의 내부회전에 대한 이론적인 연구)

  • Kim, Gyeong-Lee;Lee, Jeong-Gyeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.291-297
    • /
    • 2006
  • The equilibrium structures, relative energies and NBO analyses for the possible conformations and transition states which can exist on the internal rotation of CPDFB and CPCFB molecules have been investigated using DFT and ab initio methods with various basis sets. The interaction between bonding orbital ((C1-C3, C2-C3)) and antibonding orbital (n*(B9) and *(B9-Cl11)) was the main characteristic hyperconjugation in both molecules. In addition, the stabilization energy of CPDFB was 6.63kcal/mol and that of CPCFB was 6.97(E-form)/6.79(Z-form) kcal/mol for each conformation. The rotational barriers by internal rotation of BF2- and BFCl- functional groups were evaluated to be 5.3~6.7kcal/mol and 5.7~6.5kcal/mol respectively, which showed good agreement with the experimental values reported by previous dynamic NMR study. Finally, Z-form was more stable than E-form by 0.2 kcal/mol in CPCFB molecule and therefore Z-form was confirmed as global minimum.

Structural Modification of Alkali Tellurite Binary Glass System and Its Characterization

  • Lee, Kyu-Ho;Kim, Tae-Ho;Kim, Young-Seok;Jung, Young-Joon;Na, Young-Hoon;Ryu, Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.235-240
    • /
    • 2008
  • This paper presents results and observations obtained from a study of the optical and thermal properties of alkali tellurite depending on the composition. Fourier transform infrared (FT-IR) spectra showed evidence of chemical modification from $TeO_4$ trigonal bipyramids (tbp) to $TeO_3$ trigonal pyramids (tp) in tellurite glasses. The optical band gaps of the different glass samples calculated using Tauc's method were found to range from 3.5-3.8 eV. The glass transition temperature (Tg) and glass stability (${\Delta}T$) of alkali tellurite glasses were investigated, as $M_2O$ [M: Li, Na, K] amounted to 25 mol%, through the use of differential thermal analysis (DTA). The coefficient of thermal expansion (CTE) was measured in a thermo mechanical analysis (TMA) with a slow heating rate after the glass samples were annealed. The results confirm that the optical band gap of alkali tellurite glasses depends on the Te-O-Te structural relaxation related to the ratio of bridging/non bridging oxygen (BO/NBO). In contrast, the thermal properties are related to the ionic field strength of the Te-O-M and M-O-M bonds, and the Te-O-Te breakage depends on the ratio of BO/NBO.

Chemical Features of Solid Residues Obtained from Supercritical Water Treatment of Populus alba×glandulosa (현사시나무 목분의 초임계수 처리 공정으로부터 유래한 미분해 고형성분의 화학적 특성)

  • Kim, Kwang Ho;Eom, In Yong;Lee, Soo Min;Lee, Oh Kyu;Meier, D.;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.372-380
    • /
    • 2009
  • After supercritical water treatment of poplar wood meals (passed through 60 mesh) for 60s between 325 and $425^{\circ}C$ at the fixed pressure at $220{\pm}10atm$, some solid residues were present in the degradation products. They mainly consisted of chemically modified lignin and fibrous materials. Glucose and xylose were identified as main sugar components of fibrous materials, and the highest ratio of glucose/xylose was achieved at the highest reaction temperature. As reaction temperature was elevated, the portion of fibrous materials decreased in the solid residues, while lignin was further accumulated. The H : G : S ratio of lignin in solid residues was estimated by analytical pyrolysis. Irrespective of reaction temperatures, the H:G:S ratios were not significantly changed in the lignin in solid residues. Compared to poplar milled wood lignin (MWL), it was remarkable that H type monomers were further lowered, while portion of S type monomers increased. The amount of G type monomers were relative stable. In presence of HCl catalyst, lowering H type as well as enhancing S type was further distinguishable. According to the result of nitrobenzene oxidation (NBO), ca. 265 mg of vanillin and syringaldehyde was yielded from poplar MWL as main products. However, remarkably reduced amount of NBO products were determined from solid residues by raising operating temperature as well as by the addition of HCl catalyst. These results strongly indicate that $\beta$-O-4 linkage could be easily cleaved during supercritical water treatment, so that the lignins in the solid residues seem to be condensed phenol polymers, which are mainly formed by carbon-carbon linkages rather than $\beta$-O-4 linkage.