• Title/Summary/Keyword: NBCe1-B

Search Result 3, Processing Time 0.014 seconds

Functional identification of protein phosphatase 1-binding consensus residues in NBCe1-B

  • Lee, Kyu Pil;Kim, Hyun Jin;Yang, Dongki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.91-99
    • /
    • 2018
  • Protein phosphatase 1 (PP1) is involved in various signal transduction mechanisms as an extensive regulator. The PP1 catalytic subunit (PP1c) recognizes and binds to PP1-binding consensus residues (FxxR/KxR/K) in NBCe1-B. Consequently, we focused on identifying the function of the PP1-binding consensus residue, $^{922}FMDRLK^{927}$, in NBCe1-B. Using site-directed mutagenesis and co-immunoprecipitation assays, we revealed that in cases where the residues were substituted (F922A, R925A, and K927A) or deleted (deletion of amino acids 922-927), NBCe1-B mutants inhibited PP1 binding to NBCe1-B. Additionally, by recording the intracellular pH, we found that PP1-binding consensus residues in NBCe1-B were not only critical for NBCe1-B activity, but also relevant to its surface expression level. Therefore, we reported that NBCe1-B, as a substrate of PP1, contains these residues in the C-terminal region and that the direct interaction between NBCe1-B and PP1 is functionally critical in controlling the regulation of the ${HCO_3}^-$ transport. These results suggested that like IRBIT, PP1 was another novel regulator of ${HCO_3}^-$ secretion in several types of epithelia.

Ahcyl2 upregulates NBCe1-B via multiple serine residues of the PEST domain-mediated association

  • Park, Pil Whan;Ahn, Jeong Yeal;Yang, Dongki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.433-440
    • /
    • 2016
  • Inositol-1,4,5-triphosphate [$IP_3$] receptors binding protein released with $IP_3$ (IRBIT) was previously reported as an activator of NBCe1-B. Recent studies have characterized IRBIT homologue S-Adenosylhomocysteine hydrolase-like 2 (AHCYL2). AHCYL2 is highly homologous to IRBIT (88%) and heteromerizes with IRBIT. The two important domains in the N-terminus of AHCYL2 are a PEST domain and a coiled-coil domain which are highly comparable to those in IRBIT. Therefore, in this study, we tried to identify the role of those domains in mouse AHCYL2 (Ahcyl2), and we succeeded in identifying PEST domain of Ahcyl2 as a regulation region for NBCe1-B activity. Site directed mutagenesis and coimmunoprecipitation assay showed that NBCe1-B binds to the N-terminal Ahcyl2-PEST domain, and its binding is determined by the phosphorylation of 4 critical serine residues (Ser151, Ser154, Ser157, and Ser160) in Ahcyl2 PEST domain. Also we revealed that 4 critical serine residues in Ahcyl2 PEST domain are indispensable for the activation of NBCe1-B using measurement of intracellular pH experiment. Thus, these results suggested that the NBCe1-B is interacted with 4 critical serine residues in Ahcyl2 PEST domain, which play an important role in intracellular pH regulation through NBCe1-B.

NBCe1 Regulates Odontogenic Differentiation of Human Dental Pulp Stem Cells via NF-κB

  • Qin Li;Yanqin Ju;Changlong Jin;Li Liu;Shouliang Zhao
    • International Journal of Stem Cells
    • /
    • v.15 no.4
    • /
    • pp.384-394
    • /
    • 2022
  • Background and Objectives: Dental pulp stem cells (DPSCs) play an important role in the repair of tooth injuries. Electrogenic sodium bicarbonate cotransporter 1 (NBCe1) is a Na+-coupled HCO3- transporter encoded by the solute carrier 4A4 (SLC4A4) gene and plays a crucial role in maintaining the pH of DPSCs. Our previous research confirmed that NBCe1 is highly expressed in odontoblasts during the development of the tooth germ. Therefore, in this study, we aimed to investigate the effect of NBCe1 on odontogenic differentiation of DPSCs and further clarify the underlying mechanisms. Methods and Results: DPSCs were isolated and identified, and the selective NBCe1 inhibitor S0859 was used to treat DPSCs. We used a cell counting Kit-8 assay to detect cell proliferative ability, and intracellular pH was assessed using confocal microscopy. Odontogenic differentiation of DPSCs was analyzed using real-time PCR and Alizarin Red S staining, and the NF-κB pathway was assessed using western blotting. Our results indicated that 10 µM S0859 was the optimal concentration for DPSC induction. Intracellular pH was decreased upon treatment with S0859. The mRNA expressions of DSPP, DMP1, RUNX2, OCN, and OPN were upregulated in the NBCe1 inhibited group compared to the controls. Moreover, NBCe1 inhibition significantly activated the NF-κB pathway, and a NF-κB inhibitor reduced the effect of NBCe1 on DPSC differentiation. Conclusions: NBCe1 inhibition significantly promotes odontogenic differentiation of DPSCs, and this process may be regulated by activating the NF-κB signaling pathway.