• Title/Summary/Keyword: NATM터널

Search Result 242, Processing Time 0.025 seconds

A Study on the Seismic Performance Evaluation and the Seismic Analysis Method for Pre-Cast Concrete Lining (조립식 터널 라이닝(PCL)의 내진성능 평가 및 해석기법에 대한 고찰)

  • 정형식;배규진;이용준
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.197-207
    • /
    • 2001
  • 1980년대 이래 국내 터널의 시공법은 원지반의 강성을 활용한 NATM이 주를 이루고 있다. 그러나 NATM은 터널내부에 설치되는 내부라이닝의 여러 가지 문제점을 내포하고 있기 때문에 노르웨이에서는 조립식 터널 라이닝(Pre-Cast Concrete Lining, PCL)을 개발하여 현장타설 콘크리트 라이닝의 문제점을 해결하고자 하였다. 그러나 노르웨이와 같은 북유럽지역에서는 지진이 거의 발생되지 않고 있기 때문에 PCL공법 개발당시에 지진에 대한 영향을 고려하지 못하였다. 따라서 PCL공법을 국내에 도입하기 위해서는 먼저 지진에 대한 영향을 분석하여야 할 것으로 판단되므로 본 연구에서는 PCL공법 적용시 지진에 대한 안정성 평가 및 합리적 내진해석을 위한 연구를 수행하고자 하였다. PCL의 내진성능을 판단하기 위하여 먼저 국내에서 주로 많이 사용되고 있는 해석기법인 유사정적해석법과 응답스펙트럼해석법을 이용하여 분석하였으며 지반과 구조물의 상호작용에 대한 영향을 분석하기 위해 시간이력해석을 수행하여 터널심도별 PCL의 내진성능을 분석하였다. 이와 같은 방법으로 PCL의 내진해석을 수행한 결과, 부재에 발생된 응력이 허용응력 이내에서 발생되어 PCL의 내진성능을 확보된 것으로 판단된다. 또한 시간이력해석에 의한 지반-구조물 해석을 수행한 결과에 의하면 PCL의 내진성능을 확보하기 위한 터널의 최소 토피고가 터널직경에 2배 이상인 것으로 확인되었다. 또한 단순 구조물의 내진해석만으로는 PCL의 내진성능을 과소평가할 우려가 있는 것으로 나타났다.

  • PDF

Exposure Characteristics to Noise Among Tunnel Construction Workers (터널공사현장 근로자의 소음노출 특성 평가)

  • Kim, Kab Bae;Jang, Jae-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.831-840
    • /
    • 2013
  • The noise levels of workers in tunnel sites are likely to be high because tunneling work places are confined space. However, research on the noise exposure levels of tunneling workers have not been performed intensively due to restricted accessibility to tunnel construction sites. The aim of this study is to evaluate the noise exposure levels for workers engaged in tunneling work sites. Noise dosimeters were used for monitoring workers' noise exposure level in 5 tunneling work sites in accordance with the Notification of the Ministry of Labor. Among 5 tunneling work sites, 4 of them used NATM tunneling method and 1 work site used shield TBM tunneling method. The average noise exposure levels of NATM tunneling workers was 81.1 dB(A) and 15.4 % of the workers' noise level were exposed more than 90 dB(A) which is the exposure limit value. In Shield TBM tunneling method, 4.3 % of the workers were exposed more than 90 dB(A) of noise level, the average noise exposure levels of TBM tunneling workers was 84.1 dB(A).

A Numerical Study on Safety According to the Excavation Step for Large Cross Section Tunnel (대단면 터널굴착에 있어서 굴착순서에 따른 수치해석적 안정성 검토)

  • Jung, Hee-sun;Yoon, Ji-sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.335-341
    • /
    • 2005
  • In construction of a large cross section NATM tunnel, to keep the tunnel face stability by the ground itself bench cut method is commonly used. In order to necessity of partial face excavation method, we have to look for more enhanced method that can maintain better stress intensity. This paper presents a stress distribution of the Center Diaphragm Method from the partial face excavation methods, with the numerical analysis, and induced the optimal face distance, which is minimizing stress concentration and the optimal excavation step. Commerical 3 dimensional continuum analyzing FLAC-3D Ver. 2.1 program is used for the analysis. Analyses were performed to investigate ground behavior for tunnels with variable bench-length varying from 2m to 40m.

  • PDF

Basic Study for Development of NATM Composite Lining Method (NATM Composite 라이닝 공법 개발을 위한 기초 연구)

  • Ma, Sang-Joon;Kang, Eun-Gu;Kim, Dong-Min;Shin, Joo-Yul
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.53-68
    • /
    • 2011
  • This paper presents the fundamental parameters for designing the NATM Composite Lining to be used in NATM tunnel construction. Firstly, the concept of NATM Composite Lining behaviour is introduced and reviewed in construction-performance. For the fundamental study, the optimal mix ratio tests and backfill material property tests to develop high-quality composite lining (PC panel lining) are fundamentally carried out. And the light-weight foamed mortar which is used for backfill material is developed. Full-scale loading tests to verify a performance of the NATM Composite Lining is also performed. From this research, it is clearly found that the NATM Composite Lining is very applicable method to considerably increase the stability and constructability of tunnel structure.

A Study on the Rock Loads of NATM Tunnel Concrete Lining (NATM 터널 콘크리트라이닝 암반하중 산정방법 고찰)

  • 천병식;박태수;신영완
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.89-96
    • /
    • 2001
  • A concrete lining of NATM tunnel is the final product of a process that involves planning and evaluation of user needs, geotechnical investigations, analysis of ground-lining interaction, construction, and observations and modifications during construction. The designer must consider the lining in context of the many function, construction, and geotechnical requirements. Also, the loss of supporting capacity of shotcrete lining due to poor rock qualities and shotcrete erosion must be considered. The values, shapes, and estimating methods of rock load and water pressure are very different with every designers. Estimating methods of rock loads used in the design of NATM tunnel concrete lining are investigated. Numerical analyses are done in various conditions. And the rock loads estimated from radial stress and plastic zone are compared respectively.

  • PDF

Reinforcement of Shotcrete Lining on the Side Wall of Tunnel in Enlargement of Existing ASSM Road Tunnel (측벽부 숏크리트 보강에 의한 재래식 도로터널 단면확대)

  • Kim, Donggyou;Shin, Youngwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.81-89
    • /
    • 2012
  • The existing tunnel in urban area can be enlarged because of requirement of road-widening by traffic growth. The protector with rectangular cross section can be set up in the tunnel, which will be constructed for enlargement of width, to solve traffic jam around the tunnel. It is impossible to install the rockbolt in the lower area of tunnel due to a limited space between the protector and cutting surface. The objective of this study is to suggest the method of shotcrete thickness increase instead of rockbolt installation in the side wall of tunnel for the stability of tunnel. Numerical analysis was performed to evaluate displacement at the crown of tunnel, convergence of tunnel, and stress in shotcrete lining in 3-lane and 4-lane NATM tunnels enlarged from 2-lane conventional tunnel. There were three types of analysis condition, rockbolt installation, no rockbolt installation, and increase of shotcrete thickness without rockbolt in the side wall of tunnel. There was no difference on the displacement at the crown and the convergence of upper tunnel. In the lower tunnel, the convergence in case of no rockbolt installation was larger as maximum 1.3mm than that in case of rockbolt installation. The stress in shotcrete lining in case of no rockbolt installation was larger as maximum 1.3MPa than that in case of rockbolt installation. Numerical analysis was performed to compare the behavior of shotcrete with rockbolt with that of shotcrete, which its thickness was increased, without rockbolt. The shotcrete has an increase of 20%(250mm ${\rightarrow}$ 300mm, 4-lane tunnel)~25%(200mm ${\rightarrow}$ 250mm, 3-lane tunnel) in its thickness to reduce the stress in shotcrete lining. The behavior of shotcrete lining increased the shotcrete thickness by 20%~25% was similar to that of existing shotcrete lining with rockbolt.

Development of Mucking Process Simulation Model for Productivity Improvement in Tunneling Operation (터널 버력처리 공정의 생산성 분석을 위한 시뮬레이션 모델 개발)

  • So, Byoung Gak;Woo, Sung Kwon;Lee, Si Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.83-91
    • /
    • 2008
  • This study establishes the model to estimate a work time and a machine equipment combination in a NATM tunnel. Also it includes the increasing rate of haulage distance in the model for to make near to reality model. A simulation model focuses on the mucking process which affects the work effectiveness very highly to plan of machine use in tunneling operation. With the analysis of work effectiveness through tunnel simulation model, it is defined the problem of planning phase. Also it shows the optimal working time and efficiency of machine used through change the number of dump truck and haulage distance.

A Study on the Characteristics of Tunnel Based on the Rock Mass Classification (암반분류법에 근거한 터널 특성 연구)

  • Lee Song;Ahn Tae-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.19-25
    • /
    • 2005
  • A tunnel that uses the RMR method or the Q-system is called a 'modem tunnel' because the New Austrian Tunneling Method (NATM) is not employed, even though shotcrete and rock bolts are used as support. It is known that the modem tunnel, which is supported by shotcrete, is basically different from the conventional tunnel, which is supported by steel ribs. In order to preserve the load-carrying capacity of the rock mass, loosening and excessive rock deformations must be minimized. Although it is known that this can be achieved by applying shotcrete in the case of the modem tunnel, this has not been clearly demonstrated. In order to inspect the distinctions between the conventional tunnel and the modern tunnel, their support characteristics and the rock loads of the rock mass classifications are compared. Terzaghi's rock load classification was used as the conventional tunnel's representative rock mass classification. The RMR method and the Q-system were adopted as the modem tunnel's representative rock mass classification. The study's results show that the load-carrying capacity of shotcrete, when used as the main support in the modern tunnel, is greater than the load-capacity of the steel ribs used in the conventional tunnel. Because it has been verified that the rock loads of their rock mass classifications are not different, then, according to the rock mass classifications, the load-carrying capacity of the rock mass of the modern tunnel, which uses shotcrete, is not greater than that of the conventional tunnel.

Characteristics of defect on segmental lining of TBM tunnel in operational subway (운용중인 국내 지하철 TBM터널의 세그먼트라이닝 결함특성 분석)

  • Choo, Jinho;Lee, DongHun;Noh, EunChul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.109-128
    • /
    • 2022
  • The precise inspection for safety and diagnosis (PISD) of tunnel has been conducted by the special act on safety control of public structures. However, the present assessment for the segmental lining of TBM tunnel has limitation such as: NDTs for integrity, segmental configuration for field inspection, and consideration for jacking system. Even if the number of TBM tunnel is less than 1% of enrolled facility in FMS, more attention to maintenance should be necessary due to its usage such as multi-use facility and national important facility. Compared to NATM tunnel, excavated by drilling and blasting and then installed lining by cast-in-place within 6~12 m, TBM tunnel is cut out ground by disk and cutter-bit and then assembled 7 pieces of precast segment, 1.2~1.4 m wide. Different features of design, construction, and maintenance should be considered to be more exact evaluation of TBM tunnel. The characteristics of defect is categorized and analyzed with 11 operational TBM tunnels in domestic subway. To be more comprehend various particular defects, foreign studies have been also adapted. Crack and leakage are categorized in 7 patterns. Breakage/spalling and corrosion are also grouped into 3 patterns. Patterned defects or damages are fed back in design, construction, and are useful guidelines for maintenance stage in future.