• Title/Summary/Keyword: NASA POWER

Search Result 52, Processing Time 0.032 seconds

Wind tunnel test of wind turbine in United States and Europe (미국과 유럽의 풍력터빈 풍동실험)

  • Chang, Byeong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.42-46
    • /
    • 2005
  • In spite of fast growing of prediction codes, there is still not negligible uncertainty in their results. This uncertainty affects on the turbine structural design and power production prediction. With the growing size of wind turbine, reducing this uncertainty is becoming one of critical issues for high performance and efficient wind turbine design. In this respect, there are international efforts to evaluate and tune prediction codes of wind turbine. As the reference data for this purpose, field test data is not appropriate because of its uncontrollable wind characteristics and its inherent uncertainty. Wind tunnel can provide controllable wind. For this reason, NREL has done the full scale test of the 10m turbine at NASA-Ames. With this reference data, a blind comparison has been done with participation of 18 organizations with 19 modeling tools. The results were not favorable. In Europe, a similar project is going on. Nine organizations from five countries are participating in the MEXICO project to do full scale wind tunnel tests and calculation with prediction codes. In this study. these two projects were reviewed in respect of wind tunnel test and its contribution. As a conclusion, it is suggested that scale model wind tunnel tests can be a complementary tool to calculation codes which were evaluated worse than expected.

  • PDF

A Bootstrap Method for Analysis of Noise & Vibration Spectrum (부트스트랩 기법을 이용한 소음진동 스펙트럼 분석법 소개)

  • Chun, Young-Doo;Park, Jong-Chan;Chung, Eui-Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.185-188
    • /
    • 2008
  • This paper introduces the Bootstrap method for statistical analysis of noise and vibration spectrum in aeronautic and space fields. Generally, all components of a launch vehicle and its payloads are subjected to high intensive noise and vibration environment during the lift-off phase and the ascent phase through Mach =1 and Max Q. In order to verify their survivabilities against these severe vibroacoustic environments during qualification tests and acceptance tests, it is most important to estimate the proper upper limits of the environmental condition. Although NASA has typically utilized the Normal Tolerance Limit method in deriving these levels, the reference[1] says that the Bootstrap can be also an alternative method to estimate the maximum expected environments. In this paper, a general procedure of the Bootstrap method is summarized, and it is applied to analyze acceleration power spectral density functions, which were measured during acoustic test on the upper stage of KSLV-I.

  • PDF

Disk-averaged Spectra Simulation of Earth-like Exoplanets with Ray-tracing Method

  • Ryu, Dong-Ok;Kim, Sug-Whan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.76.2-76.2
    • /
    • 2012
  • The understanding spectral characterization of possible earth-like extra solar planets has generated wide interested in astronomy and space science. The technical central issue in observation of exoplanet is deconvolution of the temporally and disk-averaged spectra of the exoplanets. The earth model based on atmospheric radiative transfer method has been studied in recent years for solutions of characterization of earthlike exoplanet. In this study, we report on the current progress of the new method of 3D earth model as a habitable exoplanet. The computational model has 3 components 1) the sun model, 2) an integrated earth BRDF (Bi-directional Reflectance Distribution Function) model (Atmosphere, Land and Ocean) and 3) instrument model combined in ray tracing computation. The ray characteristics such as radiative power and direction are altered as they experience reflection, refraction, transmission, absorption and scattering from encountering with each all of optical surfaces. The Land BRDF characteristics are defined by the semi-empirical "parametric-kernel-method" from POLDER missions from CNES. The ocean BRDF is defined for sea-ice cap structure and for the sea water optical model, considering sun-glint scattering. The input cloud-free atmosphere model consists of 1 layers with vertical profiles of absorption and aerosol scattering combined Rayleigh scattering and its input characteristics using the NEWS product in NASA data and spectral SMARTS from NREL and 6SV from Vermote E. The trial simulation runs result in phase dependent disk-averaged spectra and light-curves of a virtual exoplanet using 3D earth model.

  • PDF

ILL-VERSUS WELL-POSED SINGULAR LINEAR SYSTEMS: SCOPE OF RANDOMIZED ALGORITHMS

  • Sen, S.K.;Agarwal, Ravi P.;Shaykhian, Gholam Ali
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.621-638
    • /
    • 2009
  • The linear system Ax = b will have (i) no solution, (ii) only one non-trivial (trivial) solution, or (iii) infinity of solutions. Our focus will be on cases (ii) and (iii). The mathematical models of many real-world problems give rise to (a) ill-conditioned linear systems, (b) singular linear systems (A is singular with all its linearly independent rows are sufficiently linearly independent), or (c) ill-conditioned singular linear systems (A is singular with some or all of its strictly linearly independent rows are near-linearly dependent). This article highlights the scope and need of a randomized algorithm for ill-conditioned/singular systems when a reasonably narrow domain of a solution vector is specified. Further, it stresses that with the increasing computing power, the importance of randomized algorithms is also increasing. It also points out that, for many optimization linear/nonlinear problems, randomized algorithms are increasingly dominating the deterministic approaches and, for some problems such as the traveling salesman problem, randomized algorithms are the only alternatives.

  • PDF

WFIRST ULTRA-PRECISE ASTROMETRY II: ASTEROSEISMOLOGY

  • Gould, Andrew;Huber, Daniel;Penny, Matthew;Stello, Dennis
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.93-104
    • /
    • 2015
  • WFIRST microlensing observations will return high-precision parallaxes, σ(π) . 0.3 µas, for the roughly 1 million stars with H < 14 in its 2.8 deg2 field toward the Galactic bulge. Combined with its 40,000 epochs of high precision photometry (∼ 0.7 mmag at Hvega = 14 and ∼ 0.1 mmag at H = 8), this will yield a wealth of asteroseismic data of giant stars, primarily in the Galactic bulge but includindvvvvvg a substantial fraction of disk stars at all Galactocentric radii interior to the Sun. For brighter stars, the astrometric data will yield an external check on the radii derived from the two asteroseismic parameters, the large-frequency separation <∆νnl> and the frequency of maximum oscillation power νmax, while for the fainter ones, it will enable a mass measurement from the single measurable asteroseismic parameter νmax. Simulations based on Kepler data indicate that WFIRST will be capable of detecting oscillations in stars from slightly less luminous than the red clump to the tip of the red giant branch, yielding roughly 1 million detections.

Discussion on Establishing UAM Operating Concept from the Pilot's Perspective (조종사 관점에서 UAM 운영개념 수립에 대한 고찰)

  • Hi-seok Yoon;Keun-young Lee;Kyu-wang Kim
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • Aviation industry is moving towards the third innovative era of AAM with electric power and AI after the JET-powered era following the Wright brothers' first flights. Research on UAM, eVTOL development, certification, and operations is competitively progressing, primarily in aviation-leading countries, aiming to resolve urban traffic saturation and foster the future aviation industries. This study introduces the concept of the pilot's role transition in operational safety as AI autonomous flight advances, comparing K-UAM operational concept with research from FAA, NASA, and EASA. It is to identify and propose solutions for challenges from the pilot's perspective in developing UAM and its safe operation system. To succeed in Advanced Air Mobility National Project, we suggest the collaboration among industry, academia, and institutions, along with the cooperation between civilians, governments, military, and the need for Urban Air Mobility integrated policies.

Development of medium resolution cross-dispersed silicon grisms in the Near Infrared ; Direct Silicon wafer bonding technique

  • Jeong, Hyeon-Ju;Wang, Wei-Song;Gully-Santiago, Michael;Deen, Casey;Pak, Soo-Jong;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.125.2-125.2
    • /
    • 2011
  • We are developing medium resolution cross-dispersed silicon grisms in the near IR region ($1.45{\sim}5.2{\mu}m$). The grisms will be installed in MIMIR, a multifunction instrument at the Lowel Observatory, USA. The two devices are designed to cover H and K band and L and M band simultaneously. Our goal is to make grism with R=3000 at 1.2 arcsec slit. The Silicon has high refractive index (n=3.4 at $1.5{\mu}m$) which enhances the resolving power by up to 5 times when compared to conventional material such as BK-7 (n=1.5 at 1.5 ${\mu}m$). The bonded grisms will be installed in a filter wheel for the uses switch from spectroscopic mode to imaging mode easily. Our device is compact and light weighted while it provides a decent resolving power. We produce monolithic grisms using e-beam lithography at the NASA JPL and chemically etching the grooves on the silicon prisms. Moreover, the main-disperser and cross-disperser will be contacted together by direct Si-Si bonding technique and eventually turn into one piece. The bonded pair offers more stability in terms of the layout of the spectrum and removes the Fresnel loss at the intersection of two grisms. We report on the proper wafer bonding steps through this research, and inspected the bonding quality thermally, optically and mechanically.

  • PDF

Noise Analysis for the Operation of the eVTOL PAV using AEDT (Aviation Environmental Design Tool) (AEDT(Aviation Environmental Design Tool)를 이용한 전기추진 수직이착륙형 PAV 운영을 위한 소음 분석)

  • Yun, Ju-Yeol;Lee, Bong-Sul;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.265-272
    • /
    • 2019
  • In this paper, we selected commuting scenarios in the most congested metropolitan area in Korea, and conducted noise analysis during personal air vehicle (PAV) operation using aviation environmental design tool (AEDT)software which was developed by Federal Aviation Administration (FAA). Noise is the second important factor after safety in order to operate PAVs through concepts such as ODM (on-demand mobility) introduced by National Aeronautics and Space Administration (NASA). Noise analysis were performed by modeling low-noise ePAVs as commercial helicopters and predicted residential suitability in order to resolve problems in which accurate NPD (noise power distance) data from PAVs were not released. The application of noise reduction technology such as electric propulsion has significantly reduced noise exposure levels and has reached the conclusion that commuting with PAVs is feasible without noise problems in the metropolitan area.

Research for Space Activities of Korea Air Force - Political and Legal Perspective (우리나라 공군의 우주력 건설을 위한 정책적.법적고찰)

  • Shin, Sung-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.18
    • /
    • pp.135-183
    • /
    • 2003
  • Aerospace force is a determining factor in a modem war. The combat field is expanding to space. Thus, the legitimacy of establishing aerospace force is no longer an debating issue, but "how should we establish aerospace force" has become an issue to the military. The standard limiting on the military use of space should be non-aggressive use as asserted by the U.S., rather than non-military use as asserted by the former Soviet Union. The former Soviet Union's argument is not even strongly supported by the current Russia government, and realistically is hard to be applied. Thus, the multi-purpose satellite used for military surveillance or a commercial satellite employed for military communication are allowed under the U.S. principle of peaceful use of space. In this regard, Air Force may be free to develop a military surveillance satellite and a communication satellite with civilian research institute. Although MTCR, entered into with the U.S., restricts the development of space-launching vehicle for the export purpose, the development of space-launching vehicle by the Korea Air Force or Korea Aerospace Research Institute is beyond the scope of application of MTCR, and Air Force may just operate a satellite in the orbit for the military purpose. The primary task for multi-purpose satellite is a remote sensing; SAR sensor with high resolution is mainly employed for military use. Therefore, a system that enables Air Force, the Korea Aerospace Research Institute, and Agency for Defense Development to conduct joint-research and development should be instituted. U.S. Air Force has dismantled its own space-launching vehicle step by step, and, instead, has increased using private space launching vehicle. In addition, Military communication has been operated separately from civil communication services or broadcasting services due to the special circumstances unique to the military setting. However, joint-operation of communication facility by the military and civil users is preferred because this reduces financial burden resulting from separate operation of military satellite. During the Gulf War, U.S. armed forces employed commercial satellites for its military communication. Korea's participation in space technology research is a little bit behind in time, considering its economic scale. In terms of budget, Korea is to spend 5 trillion won for 15 years for the space activities. However, Japan has 2 trillion won annul budget for the same activities. Because the development of space industry during initial fostering period does not apply to profit-making business, government supports are inevitable. All space development programs of other foreign countries are entirely supported by each government, and, only recently, private industry started participating in limited area such as a communication satellite and broadcasting satellite, Particularly, Korea's space industry is in an infant stage, which largely demands government supports. Government support should be in the form of investment or financial contribution, rather than in the form of loan or borrowing. Compared to other advanced countries in space industry, Korea needs more budget and professional research staff. Naturally, for the efficient and systemic space development and for the prevention of overlapping and distraction of power, it is necessary to enact space-related statutes, which would provide dear vision for the Korea space development. Furthermore, the fact that a variety of departments are running their own space development program requires a centralized and single space-industry development system. Prior to discussing how to coordinate or integrate space programs between Agency for Defense Development and the Korea Aerospace Research Institute, it is a prerequisite to establish, namely, "Space Operations Center"in the Air Force, which would determine policy and strategy in operating space forces. For the establishment of "Space Operations Center," policy determinations by the Ministry of National Defense and the Joint Chief of Staff are required. Especially, space surveillance system through using a military surveillance satellite and communication satellite, which would lay foundation for independent defense, shall be established with reference to Japan's space force plan. In order to resolve issues related to MTCR, Air Force would use space-launching vehicle of the Korea Aerospace Research Institute. Moreover, defense budge should be appropriated for using multi-purpose satellite and communication satellite. The Ministry of National Defense needs to appropriate 2.5 trillion won budget for space operations, which amounts to Japan's surveillance satellite operating budges.

  • PDF

Initial Climb Mission Analysis of a Solar HALE UAV (태양광 고고도 장기체공 무인기의 초기 상승 임무 분석)

  • Shin, Kyo-Sic;Hwang, Ho-Yon;Ahn, Jon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.468-477
    • /
    • 2014
  • In this research, how a solar powered HALE (high altitude long endurance) UAV (Unmanned Aerial Vehicle) can climb and reach mission altitude, 18km, starting from the ground using only solar energy. A glider type aircraft was assumed as a baseline configuration which has wing area of $35.98m^2$ and aspect ratio of 25. Configuration parameters, lift and drag coefficients were calculated using OpenVSP and XFLR5 that are NASA open source programs, and climb flights were predicted through energy balance between available energy from solar power and energy necessary for a climb flight. Minimum time climb flight was obtained by minimizing flight velocities at each altitude and total time and total energy consumption to reach the mission altitude were predicted for different take off time. Also, aircraft moving distances due to westerly wind and flight speed were calculated.