• Title/Summary/Keyword: NAPLs contamination

Search Result 3, Processing Time 0.022 seconds

The Evaluation of Petroleum Contamination in Heterogeneous Media Using Partitioning Tracer Method (분배성 추적자 시험법을 이용한 불균질 지반의 유류 오염도 평가)

  • Kim, Eun-Hyup;Rhee, Sung-Su;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1372-1377
    • /
    • 2009
  • For the remediation of the subsurface contaminated by nonaqueous phase liquids(NAPLs), it is important to characterize the NAPL zone properly. Conventional characterization methods provide data at discrete points. To overcome the weak points of conventional characterization methods, the partitioning tracer method has been developed and studied. The average saturation of NAPL($S_n$), which is the representative and continuous saturation value within contaminated site, can be calculated by comparing the transport of the partitioning tracers to that of the conservative tracer in the partitioning tracer method. In this study, the application of the partitioning tracer method in heterogeneous media was investigated. To represent the heterogeneous condition of subsurface, a two-dimensional soil box was divided into four layers and each layer contained different sized soils. Soils in the soil box were contaminated by the mixture of kerosene and diesel, and partitioning tracer tests were conducted before and after the contamination using methanol as conservative tracer and 4-methyl-2-pentanol, 2-ethyl-1-butanol, and hexanol as partitioning tracers. The response curves of partitioning tracers from contaminated soils were separated and retarded in comparison with those from non-contaminated soils. The contamination of soils by NAPLs, therefore, can be detected by partitioning tracer method considering these retardations of tracers. From our experiment condition, the average saturation of NAPLs calculated by partitioning tracer method using the methanol as conservative tracer and hexanol as partitioning tracer showed the highest accuracy, though all results were underestimated. Further studies, therefore, were needed for improving the accuracy using the partitioning tracer test in heterogeneous media.

  • PDF

Estimating Partition Coefficients of Partitioning Tracers between Water and BTEX Mixtures (BTEX 혼합물질과 액상 간 분배성 추적자의 분배계수 예측)

  • Rhee, Sung-Su;Cho, Sang-Youn;Oh, Myoung-Hak;Park, Jun-Boum
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.47-54
    • /
    • 2007
  • The partitioning tracer method has been studied as an alternative method for detecting and characterizing the distribution of nonaqueous phase liquids (NAPLs) contaminants in subsurface. The reliability of the partitioning tracer method depends on accurate measurements of partition coefficients of the partitioning tracers between water and NAPLs. In this study, partition coefficients of several alcohol tracers between water and benzene, toluene, ethylbenzene, xylene, and BTEX mixtures are estimated using the modified approach of equivalent alkane carbon number (EACN). Agreements between the measured and estimated partition coefficients were generally observed in experiments. Based on these results, it is confirmed that the partition coefficients of tracers are readily obtained without experiments if the EACN values for the tracers and LNAPLs are known.

Removal of Benzene-Nonaqueous Phase liquid(NAPL) in Soil Tank by NAPL Swelling and Non-swelling alcohols (토양 탱크에서 흡수 알코올과 비흡수 알코올을 이용한 벤젠-비수용상액체 제거 연구)

  • Song, Chung-Hyun;Jeong, Seung-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.40-47
    • /
    • 2009
  • Coinjection of alcohol and air or alcohol flooding only were evaluated with 3-D soil tank for removal of nonaqueous phase liquid (NAPL) contaminant from soil. 70%-ethanol and 40%-isopropanol were used for non-NAPL-swelling alcohol and NAPL-swelling alcohol, respectively. 729 ml-benzene was placed in the 37 liter soil tank. Alcohols were respectively injected from the injection well placed near the bottom of the tank and mobilized free phase NAPL and aqueous phases were then recovered from the extraction well placed in the upper part of the soil tank. Approximately 50% of removed NAPLs were free-phase in all experiments. The results were completely different to the previous soil column experiment results and also implied that alcohol properties did not affect the NAPL removal efficiency in the 3-D soil tank experiment. Air was also co-injected with alcohol to evaluate co-injection effects on NAPL removal. Enhanced NAPL removal effect of co-injection of 70%-ethanol and air was also found even in the 3-D soil tank evaluation. However, co-injection effect of 40%-iso-propanol and air was less apparent. This study determined that the most important parameter governing alcohol flooding for NAPL removal would be extraction capacity to recover NAPL and aqueous phase flowing in the soil. More researches are required for improving recovery efficiency of extraction well in real soil contamination conditions.

  • PDF