• Title/Summary/Keyword: NAPLs (Non-aqueous Phase Liquids)

Search Result 7, Processing Time 0.022 seconds

Simulation for application of pumping-and-treatment system to the recovery of non-aqueous phase liquids (NAPLs) at and below the water table (토양의 포화지대에 분포하는 고밀도비수상액체(DNAPL)와 저밀도비수상액체(LNAPL)의 펌핑 제거공정에 대한 모사)

  • 김주형;이종협
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.51-61
    • /
    • 1997
  • The objective of this study is to evaluate the feasibility of Pumping-and-Treatment system (PTS) for remediation of the saturated zones contaminated with NAPLs. A simulation is carried out for the removal of DNAPLs (denser-than-water non-aqueous phase liquids) and LNAPLS (lighter-than-water non-aqueous phase liquids) distributing at and below the water table. In the study, LNAPL and DNAPL are assumed to be n-hexane and 1,1-dichloroacetone, respectively. The model system studied consists of four heterogeneous soil layers with different permeabilities. Groundwater flows through the bottom layer and a pumping well is located under the initial water table. The time-driven deformation of the water table and removal efficiency of contaminants are estimated after vacuum application to the inlet of the well. In the calculation, FVM (Finite Volumetric Method) with SIMPLEC algorithm is applied. Results show that removal efficiencies of both DNAPL and LNAPL are negligible for the first 5 days after the PTS operation. However, when the cone-shape water table is formed around the inlet of the pumping well, the rapid removal rate is obtained since NAPLs migrate rapidly through the curvature of the water table. The removal efficiency of DNAPL is estimated to be higher than that of LNAPL due to the gravity. The results also show that the fluctuation or cone-shaped depression of the water table enhances the removal efficiency of NAPLs in saturated zones. The simulation results could provide a basis of the PTS design for the removal of NAPLs in saturated zones.

  • PDF

Partitioning Tracer Analysis with Temporal Moments Equations (시간 모멘트식을 이용한 상분할추적자의 해석)

  • Cho, Jong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.3-9
    • /
    • 2011
  • Partitioning tracers have been used with non-partitioning, inert tracer such Br, for detection, estimation, and monitoring of remediation performance of the subsurface contaminated with nonaqueous phase liquids (NAPLs). Various partitioning tracers with different partition coefficients between aqueous and nonaqueous phase liquids can be used to determine the hydraulic conductivity, dispersivity, and residual mass of NAPLs in the subsurface soil matrices. Temporal moment-generating equations were used to analyze the field pilot-scale test results. The pilot-scale tests included conservative tracer tests and partitioning tracer tests. Analyses of nonaqueous phase liquid distribution and characteristics of groundwater bearing soil media were performed.

A Study of surfactant-based remediation for removal of toluene and PCE in contaminated water

  • Kim, Eun-Sik;Lee, Dal-Heui;Chang, Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.302-305
    • /
    • 2003
  • The purpose of this study was to assess the effect of surfactant on the rate of NAPLs(non-aqueous phase liquids) solubilization. The experimental variables were surfactant type, NAPLs type and water type. The main experimental designs were consists of two phases. The solubilization rate is sensitive to surfactant type based on this test. Used aqueous surfactants were solubilized and removed 72.77 to 89.90% of toluene, PCE(tetrachloroethylene) from the contaminated water during the test, respectively. T60 has higher and stable recovery ratio than SDS in surfactant type but, the micelle of the T60 is more weaker than that of SDS based on this study's results. And the solubilization rate in used water type was almost same.(deionized water, surface water).

  • PDF

An Experimental Study of the Effect of the Test-well Arrangement on the Partitioning Interwell Tracer Test for the Estimation of the NAPL Saturation (지하수 유동 방향에 대한 관정배열이 분배추적자 시험에 미치는 영향 분석)

  • Kim, Bo-A;Kim, Yongcheol;Yeo, In Wook;Ko, Kyung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.111-122
    • /
    • 2014
  • Partitioning interwell tracer test (PITT) is a method to quantify and qualify a site contaminated with NAPLs (Non-Aqueous Phase Liquids). Analytical description of PITT assumes that the injection-pumping well pair is on the line of the ambient groundwater flow direction, but the test-well pair could frequently be off the line in a real field site, which could be an erroneous factor in analyzing PITT data. The purpose of this work is to study the influence of the angle of the test-well pair on the ambient groundwater flow direction based on the result from PITT. From the experiments, it was found that the obliqueness of the test-well pair to the ambient groundwater flow direction could affect the tracer test resulting in a decreased NAPL estimation efficiency. In case of an oblique arrangement of the test-well pair to the ambient flow direction, it was found that the injection of a chase fluid could enhance the estimation efficiency. An increase of the pumping rate could enhance the recovery rate but it cannot be said that a high pumping rate can increase the test efficiency because a high pumping rate cannot give partitioning tracers enough time to partition into NAPLs. The results have a implication that because the arrangement of the test-well pair is a controlling factor in performing and interpreting PITT in the field in addition to the known factors such as heterogeneity and the source zone architecture, flow direction should be seriously considered in arranging test-well pair.

Degradation of TPHs, TCE, PCE, and BTEX Compounds for NAPLs Contaminated Marine Sediments Using In-Situ Air Sparging Combined with Vapor Extraction (증기추출법과 결합된 공기주입법을 이용한 비수용성액체 해양퇴적물의 TPHs, TCE, PCE 및 BTEX 정화)

  • Lee, Jun-Ho;Han, Sun-Hyang;Park, Kap-Song
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.425-444
    • /
    • 2013
  • This study was carried out in order to determine the remediation of total petroleum hydrocarbons (TPHs), trichloroethylene (TCE), perchloroethylene (PCE), benzene, toluene, ethylbenzene and xylenes (BTEX) compounds for non-aqueous phase liquids (NAPLs) using in-situ air sparging (IAS) / vapor extraction (VE) with the marine sediments of Mandol, Hajeon, Sangam and Busan, South Korea. Surface sediment of Mandol area had sand characteristics (average particle size, 1.789 ${\Phi}$), and sandy silt characteristics (average particle size, 5.503 ${\Phi}$), respectively. Sangam surface sediment had silt characteristics (average particle size, 5.835 ${\Phi}$). Sediment characteristics before experiment in the Busan area showed clay characteristics (average particle size, 8.528 ${\Phi}$). TPHs level in the B1 column of Mandol, Hajeon, Sangam, and Busan sediments were 2,459, 6,712, 4,348, and 14,279 ppm. B2 (3 L/min) to B5 (5 L/min) columns reduced 99.5% to 100.0% of TCE and 93.2% to 100.0% of PCE. Removal rates of TCE, PCE, and BTEX are closely correlated (0.90-0.99) with particle sizes and organic carbon concentrations. However, TPHs (0.76) and benzene (0.71) showed the poorer but moderate correlations with the same parameters.

A Pilot Study for Remediation of Groundwater by Surfactant -Enhanced Soil Flushing

  • Park, Jong Oh;Lee, Dal-Heui
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.5
    • /
    • pp.1-7
    • /
    • 2016
  • The removal of non-aqueous phase liquids (NAPLs) from groundwater using pure water, via pump and treat, is quite ineffective due to their low solubility and hydrophobicity. Therefore, the objectives of pilot tests were to select potentially suitable surfactants that solubilize tetrachloroethylene (PCE) and trichloroethylene (TCE) present as contaminants and to evaluate the optimal range of process parameters that can increase the removal efficiency in surfactant-enhanced soil flushing (SESF). Used experimental method for surfactant selection was batch experiments. The surfactant solution parameters for SESF pilot tests were surfactant solution concentration, surfactant solution pH, and the flow rate of surfactant solution in the SESF pilot system. Based on the batch experiments for surfactant selection, DOSL (an anionic surfactant) was selected as a suitable surfactant that solubilizes PCE and TCE present as contaminants. The highest recovery (95%) of the contaminants was obtained using a DOSL surfactant in the batch experiments. The pilot test results revealed that the optimum conditions were achieved with a surfactant solution concentration of 4% (v/v), a surfactant solution pH of 7.5, and a flow rate of 30 L/min of surfactant solution (Lee and Woo, 2015). The maximum removal of contaminants (89%) was obtained when optimum conditions were simultaneously met in pilot-scale SESF operations. These results confirm the viability of SESF for treating PCE and TCE-contaminated groundwater.

Transport behavior of a surfactant tracer(CPC) with Langmuir type adsorption isotherm on NAPL-water interface in a homogeneous porous medium (NAPL-물 계면에서 Langmuir형 흡착특성을 보이는 계면추적자(CPC)의 다공성 균질매질내 유동특성)

  • 김헌기;문희수;이상훈
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.3-13
    • /
    • 2001
  • It has been known that nonlinear characteristics of sorption affect the transport behavior of water soluble pollutants in soils. However detailed experimental studies have not been performed to verify the effect of non-linearity of adsorption isotherm on transport of chemicals in porous media. In this research, the distortion of breakthrough curves of a cationic surfactant (cetylpyridinium chloride, CPC) in a engineered stainless steel column packed with glass beads were investigated. Glass beads with about 110 $\mu\textrm{m}$diameter coated with a thin n-decane film were used as the media providing the sorption surface for CPC. The CPC adsorption isotherm on the surface of n-decane from aqueous solution was a typical Langmuir type. The breakthrough curve of CPC using step Input showed a late breakthrough on the front side and early breakthrough on the back side accordance to the shape of the isotherm. The retardation factor of CPC was found to be a strong function of the input concentration, which also a manifestation of the non-linearity of the isotherm. The retardation factors for the CPC with step input agreed with those of pulse input that the maximum concentrations are controlled to be the same as the step input concentrations. This results support the validity of the unproven field practices of using hydrogeotracers with non-linear adsorption isotherms to determine the hydrogeological parameters, e.g., NAPL saturation, air-water or NAPL-water interfacial areas.

  • PDF