• Title/Summary/Keyword: NADPH supply

Search Result 12, Processing Time 0.021 seconds

Effect of Iron Excess-induced Oxidative Stress on Platelet Aggregation (과잉 철로 유도된 산화적 스트레스가 혈소판 활성화에 미치는 작용)

  • Seo, Geun-Young;Park, Hyo-Jin;Jang, Sung-Geun;Park, Young-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.979-984
    • /
    • 2006
  • Although iron is essential for many physiological processes, excess iron can lead to tissue damage by promoting the generation of reactive oxygen species (ROS). There is increasing evidence that ROS might play an important role in the pathogenesis of cardiovascular disease. However, the effects of iron excess on platelet function and the thrombotic response to vascular injury are not well understood. We examined the effects of iron excess-induced oxidative stress and the antioxidants on platelet aggregation. Oxidative stress was accessed by either free iron $(Fe^{+2})$ or hydrogen peroxide $(H_2O_2)$, as well as their combination on washed rabbit platelets (WPs) in vitro. When WPs were stimulated with either $Fe^{+2}$ alone or a subthreshold concentration of collagen, which gave an aggregatory curve with a little effect, and a dose dependent increase in platelet aggregation was observed by increasing concentrations of $Fe^{+2}$ with $H_2O_2$. This aggregation was associated with the iron-catalyzed formation of hydroxyl radicals from $H_2O_2$, and were inhibited by NAD/NADP (proton acceptor), catalase $(H_2O_2\;scavenger)$, tiron (iron chelator), mannitol (hydroxyl radical scavenger), and indomethacin (cyclooxygenase inhibitor), but not by NADH/NADPH (proton donor), superoxide mutase, and aspirin. However, NADH/NADPH, an essential cofactor for the antioxidant capacity by the supply of reducing potentials, showed the effect of an enhanced radical formation, suggesting a role for NADH/NADPH-dependent oxidase. These results suggest that iron $(Fe^{+2})$ can directly interact with washed rabbit platelets and this aggregation be mediated by OH formation as in the Fenton reaction, inhibited by radical scavengers.

The Effect of water-extract of Epimedium koreanum Nakai on age-related changes of the xenobiotic metabolizing enzyme system in the liver of rats (음양곽의 추출물이 노화에 따른 흰쥐 간의 이물질대사 효소계에 미치는 영향)

  • Lee, Young-Gu;Sohn, Hyung-Ok;Lee, Dong-Wook;Lim, Heung-Bin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2002
  • Epimedium koreanum Nakai(EKN) has traditionally been well-known as a herbal medicine for the promotion of stamina and the improving sexual activity of human in oriental countries including Korea and China. The aim of this study was to investigate the effect of dietary supplementation of EKN water-extract(0.025%,w/v) on age-related change of xenobiotic metabolizing system in rat liver. Long-term supply of the EKN extract to rats did not induce any discernible signs. However, the mass of liver and kidney were slightly increased by the dietary supplementation. Level of cytochrome P450, NADPH cytochrome P450 reductase, P450 dependent ethoxycoumarin O-deethylase benzphetamine N-demethylase and glutathione-S-transferase in liver were decreased with age, but, these activities in 24 months of age were declined more in rats supplied with EKN extract. Level of cytochrome b5 and NADH-cytochrome b5 reductase were also decreased with age, however, there was no significant difference between with and without EKN extract. These results indicate that long-term supplementation of EKN extract to rats from weaning to 24 months may be a burden on the liver function in old age, and may aggregate the decline of xenobiotic metabolizing enzymes activities in old age.