• 제목/요약/키워드: NADPH oxidase complex

검색결과 8건 처리시간 0.02초

Nucleotide Binding Component of the Respiratory Burst Oxidase of Human Neutrophils

  • Park, Jeen-Woo;Ahn, Soo-Mi
    • BMB Reports
    • /
    • 제28권3호
    • /
    • pp.275-280
    • /
    • 1995
  • The respiratory burst oxidase of neutrophils is a multicomponent enzyme, domant in resting cells, that catalyzes the reduction of oxygen to $O_{2}^{-}$ at the expense of NADPH. In the resting neutrophil, some of the components of the oxidase, including proteins p47 and p67, are in the cytosol, while the rest are in the plasma membrane. Recent evidence has suggested that at least some of the cytosolic oxidase components exist as a complex. The cytosolic complex with a molecular weight of ~240 kDa was found to bind to blue-agarose and 2',5'-ADP-agarose, which recognize nucleotide requiring enzymes. In order to identify the nucleotide binding component of the cytosolic complex we purified recombinant p47 and p67 fusion proteins using the pGEX system. Pure recombinant p47 was retained completely on 2',5'-ADP-agarose, whereas pure recombinant p67 did not bind to these affinity beads. On the basis of these results, we infer that p47 may contain the nucleotide binding site.

  • PDF

Regulation of the Phagocyte Respiratory Burst Oxidase by Protein Interactions

  • Lambeth, J. David
    • BMB Reports
    • /
    • 제33권6호
    • /
    • pp.427-439
    • /
    • 2000
  • The activity of the phagocyte respiratory burst oxidase is regulated by complex and dynamic alterations in protein-protein interactions that result in the rapid assembly of an active multicomponent NADPH oxidase enzyme on the plasma membrane. While the enzymatic activity has been studied for the past 20 years, the past decade has seen remarkable progress in our understanding of the enzyme and its activation at the molecular level. This article describes the current state of knowledge, and proposes a model for the mechanism by which protein-protein interactions regulate enzyme activity in this system.

  • PDF

SKOV-3 난소암 세포주에서 lysophosphatidic acid 유도 세포의 이동에 있어 활성산소의 역할 (Reactive Oxygen Species Mediates Lysophosphatidic Acid-induced Migration of SKOV-3 Ovarian Cancer Cells)

  • 김은경;이혜선;하홍구;윤성지;하정민;김영환;진인혜;신화경;배순식
    • 생명과학회지
    • /
    • 제22권12호
    • /
    • pp.1621-1627
    • /
    • 2012
  • 세포의 이동은 성장, 면역 작용, 그리고 혈관 신생 등 많은 생리현상에 중요한 역할을 한다. 또한 염증 및 종양 세포 침윤 등의 다양한 병리적 현상과도 밀접한 연관이 있다. 본 연구에서는 lysophosphatidic acid (LPA)는 활성산소의 생성을 통해 SKOV-3 난소암세포의 이동을 조절한다는 것을 관찰하였다. 먼저, 난소 암세포인 SKOV-3에서 LPA에 의한 세포의 이동이 강하게 일어남을 확인하였다. LPA에 의한 SKOV-3 세포의 이동은 phosphatidylinositol 3-kinase (PI3K)/Akt 신호전달체계를 저해시키는 약물에 의해서 완벽히 억제됨을 확인하였으나 ERK 신호전달체계를 저해시키는 약물에 의해서는 전혀 영향을 받지 않았다. 그리고 SKOV-3 세포에서 LPA에 의한 활성산소 형성이 시간에 따라 강하게 일어남을 확인하였다. 더욱이 LPA에 의한 활성산소 형성도 PI3K 또는 Akt의 저해제에 의해서 완벽히 억제됨을 확인하였으나 ERK 신호전달을 억제하였을 때는 거의 영향을 받지 않았다. SKOV-3 세포에서 LPA에 의해 생성된 활성산소는 diphenylene idonium (DPI, $10{\mu}M$), apocyanin (Apo, $10{\mu}M$)과 같은 NADPH oxidase 억제제를 전 처리하였을 때 활성산소가 형성되지 못함을 관찰하였다. 그러나 xanthine oxidase (allopurinol, Allo, $10{\mu}M$), cyclooxygenase (indomethacin, Indo, $10{\mu}M$), 또는 mitochondrial respiratory chain complex I (rotenone, Rot, $10{\mu}M$)를 억제하였을 때는 LPA에 의한 활성산소 형성에 영향을 주지 못함을 확인하였다. 마지막으로 활성산소 억제제인 N-acetylcysteine (NAC, $10{\mu}M$)에 의해서 LPA에 의한 암세포의 이동이 억제됨을 관찰하였다. 이와 더불어 LPA에 의한 SKOV-3 세포의 이동도 NADPH oxidase 억제에 의해 저해가 됨을 확인하였다. 이러한 연구결과로 보아 LPA에 의한 활성산소의 형성에는 PI3K/Akt/NADPH oxidase 신호전달체계가 중추적인 역할을 하며 이를 통해 암세포의 이동을 조절한다는 것을 알 수 있었다.

Effect of Antioxidant Enzymes on Hypoxia-Induced HIF-$1{\alpha}$ Accumulation and Erythropoietin Activity

  • Cho, Eun-Jin;Cho, Ki-Woon;Chung, Kyoung-Jin;Yang, Hee-Young;Park, Hyang-Rim;Park, Byung-Ju;Lee, Tae-Hoon
    • International Journal of Oral Biology
    • /
    • 제34권4호
    • /
    • pp.205-213
    • /
    • 2009
  • The mechanisms underlying the actions of the antioxidants upon reactive oxygen species (ROS) generation by NADPH oxidase complex have remained uncertain. In this study, we investigated NADPH oxidase activity and the role of antioxidant enzymes upon the generation of ROS during hypoxic stress. ROS generation was found to increase in the mouse kidney under hypoxic stress in a time-dependent manner. Moreover, we found in MCT cells that hypoxia-induced hydrogen peroxide production was decreased by NAC pretreatment. We further analyzed HIF-$1{\alpha}$, PHD2 and VHL expression in the NAC-pretreated MCT cells and assessed the response of antioxidant enzymes at the transcriptional and translational levels. SOD3 and Prdx2 were significantly increased during hypoxia in the mouse kidney. We also confirmed in hypoxic $Prdx2^{-/-}$ and SOD3 transgenic mice that erythropoietin (EPO) is transcriptionally regulated by HIF-$1{\alpha}$. In addition, although EPO protein was found to be expressed in a HIF-$1{\alpha}$ independent manner in three mouse lines, its activity differed markedly between normal and $Prdx2^{-/-}$/SOD3 transgenic mice during hypoxic stress. In conclusion, our current results indicate that NADPH oxidase-mediated ROS generation is associated with hypoxic stress in the mouse kidney and that SOD3 and Prdx2 cooperate to regulate cellular redox reactions during hypoxia.

Dieckol Attenuates Microglia-mediated Neuronal Cell Death via ERK, Akt and NADPH Oxidase-mediated Pathways

  • Cui, Yanji;Park, Jee-Yun;Wu, Jinji;Lee, Ji Hyung;Yang, Yoon-Sil;Kang, Moon-Seok;Jung, Sung-Cherl;Park, Joo Min;Yoo, Eun-Sook;Kim, Seong-Ho;Ahn Jo, Sangmee;Suk, Kyoungho;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권3호
    • /
    • pp.219-228
    • /
    • 2015
  • Excessive microglial activation and subsequent neuroinflammation lead to synaptic loss and dysfunction as well as neuronal cell death, which are involved in the pathogenesis and progression of several neurodegenerative diseases. Thus, the regulation of microglial activation has been evaluated as effective therapeutic strategies. Although dieckol (DEK), one of the phlorotannins isolated from marine brown alga Ecklonia cava, has been previously reported to inhibit microglial activation, the molecular mechanism is still unclear. Therefore, we investigated here molecular mechanism of DEK via extracellular signal-regulated kinase (ERK), Akt and nicotinamide adenine dinuclelotide phosphate (NADPH) oxidase-mediated pathways. In addition, the neuroprotective mechanism of DEK was investigated in microglia-mediated neurotoxicity models such as neuron-microglia co-culture and microglial conditioned media system. Our results demonstrated that treatment of anti-oxidant DEK potently suppressed phosphorylation of ERK in lipopolysaccharide (LPS, $1{\mu}g/ml$)-stimulated BV-2 microglia. In addition, DEK markedly attenuated Akt phosphorylation and increased expression of $gp91^{phox}$, which is the catalytic component of NADPH oxidase complex responsible for microglial reactive oxygen species (ROS) generation. Finally, DEK significantly attenuated neuronal cell death that is induced by treatment of microglial conditioned media containing neurotoxic secretary molecules. These neuroprotective effects of DEK were also confirmed in a neuron-microglia co-culture system using enhanced green fluorescent protein (EGFP)-transfected B35 neuroblastoma cell line. Taken together, these results suggest that DEK suppresses excessive microglial activation and microglia-mediated neuronal cell death via downregulation of ERK, Akt and NADPH oxidase-mediated pathways.

Inhibitory effect of Quercetin 3-O-$\beta$-(2"-galloyl)-rhamnopyranoside and its building moiety on the production of oxygen radicals in activated murine macrophages Raw264.7

  • Kim, Byung-Hak;Min, Kyung-Rak;Kim, Young-Soo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.214.2-215
    • /
    • 2003
  • Reactive oxygen species play an important role in aging. carcinogenesis, and certain neurological disorders of human beings in addition to the host-defensive mechanism of inflammatory response. Murine macrophages Raw264.7 released superoxide anions via NADPH oxidase complex and nitric oxide (NO) via iNOS synthase when the cells were stimulated with unopsonized zymosan binding to complement receptor. (omitted)

  • PDF

NADPH Oxidase and Mitochondrial ROS are Involved in the $TNF-{\alpha}$-induced Vascular Cell Adhesion Molecule-1 and Monocyte Adhesion in Cultured Endothelial Cells

  • Yu, Jae-Hyeon;Kim, Cuk-Seong;Yoo, Dae-Goon;Song, Yun-Jeong;Joo, Hee-Kyoung;Kang, Gun;Jon, Ji-Yoon;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권4호
    • /
    • pp.217-222
    • /
    • 2006
  • Atherosclerosis is considered as a chronic inflammatory process. However, the nature of the oxidant signaling that regulates monocyte adhesion and its underlying mechanism is poorly understood. We investigated the role of reactive oxygen species on the vascular cell adhesion molecule-1 (VCAM-1) and monocyte adhesion in the cultured endothelial cells. $TNF-{\alpha}$ at a range of $1{\sim}30\;ng/ml$ induced VCAM-1 expression dose-dependently. BCECF-AM-labeled U937 cells firmly adhered on the surface of endothelial cells when the endothelial cells were incubated with $TNF-{\alpha}$ (15 ng/ml). Ten $\;{\mu}mol/L$ of SB203580, an inhibitor of p38 MAPK, significantly reduced $TNF-{\alpha}-induced$ VCAM-1 expression, compared to the JNK inhibitor ($40\;{\mu}mol/L$ of SP60015) or ERK inhibitor ($40\;{\mu}mol/L$ of U0126). Also, SB203580 significantly inhibited $TNF-{\alpha}-induced$ monocyte adhesion in HUVEC. Superoxide production was minimal in the basal condition, however, treatment of $TNF-{\alpha}$ induced superoxide production in the dihydroethidineloaded endothelial cells. Diphenyleneiodonium (DPI, $10\;{\mu}mol/L$), an inhibitor of NADPH oxidase, and rotenone $(1\;{\mu}mol/L)$, an inhibitor of mitochondrial complex I inhibited $TNF-{\alpha}-induced$ superoxide production, VCAM-1 expression and monocyte adhesion in the endothelial cells. Taken together, our data suggest that NADPH oxidase and mitochondrial ROS were involved in $TNF-{\alpha}-induced$ VCAM-1 and monocyte adhesion in the endothelial cells.