• 제목/요약/키워드: NADPH/NADP+ ratio

검색결과 8건 처리시간 0.022초

Alteration in Pyridine Nucleotide Status in Cells as an Adaptive Response to Water Stress in Rice (Oryza sativa L.) Seedlings

  • Boo, Yong-Chool;Jung, Jin
    • Applied Biological Chemistry
    • /
    • 제41권4호
    • /
    • pp.228-234
    • /
    • 1998
  • An adaptive measure of photosynthetic cells to a condition identified with a reduction of cellular energy charge, caused by water deficit-induced impairment of photosynthetic ATP production, was investigated using hydroponically cultured rice seedlings. Water stress treatment of the seedlings resulted in a marked decrease in cellular ATP level, a significant increase in the content of NAD(H) and concurrent decrease in that of NADP(H) in shoots, which accompanied a decrease in the activity of NAD kinase (EC 2.7.1.23) that specifically converts NAD(H) to NADP(H). The decline in the enzyme activity was particularly evident in the $Ca^{2+}/calmodulin-dependent$ kinase, the major form of NAD kinase in plants, whereas the level of active calmodulin remained unchanged during water deficit. The ratio of $NADP^+$ to NADPH was maintained nearly constant and no increases were seen in the level of $H_2O_2$ and the activities of $superoxide/H_2O_2-detoxifying$ enzymes in shoots stress-treated for two days. Based on these results, it may be suggested that rice plants take a strategy to cope with an adverse situation of limited photophosphorylation created by water deficit in that cells facilitate ATP production through glycolysis and oxidative phosphorylation; in doing so, rice cells suppress NAD kinase activity, consequently up-sizing the NAD(H) pool at the expense of the NADP(H) pool. Several parameters associated with the stress symptoms are also of implicative that there is no overproduction of superoxide radical or the related active oxygen at least in rice seedlings.

  • PDF

Purification and Properties of Glucose 6-Phosphate Dehydrogenase from Aspergillus aculeatus

  • Ibraheem, Omodele;Adewale, Isaac Olusanjo;Afolayan, Adeyinka
    • BMB Reports
    • /
    • 제38권5호
    • /
    • pp.584-590
    • /
    • 2005
  • Glucose 6-phosphate dehydrogenase (EC 1.1.1.49) was purified from Aspergillus aculeatus, a filamentous fungus previously isolated from infected tongue of a patient. The enzyme, apparently homogeneous, had a specific activity of $220\;units\;mg^{-1}$/, a molecular weight of $105,000{\pm}5,000$ Dal by gel filtration and subunit size of $52,000{\pm}1,100$ Dal by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The substrate specificity was extremely strict, with glucose 6-phosphate (G6P) being oxidized by nicotinamide adenine dinucleotide phosphate (NADP) only. At assay pH of 7.5, the enzyme had $K_m$ values of $6\;{\mu}m$ and $75\;{\mu}m$ for NADP and G6P respectively. The $k_{cat}$ was $83\;s^{-1}$. Steady-state kinetics at pH 7.5 produced converging linear Lineweaver-Burk plots as expected for ternary-complex mechanism. The patterns of product and dead-end inhibition suggested that the enzyme can bind NADP and G6P separately to form a binary complex, indicating a random-order mechanism. The enzyme was irreversibly inactivated by heat in a linear fashion, with G6P providing a degree of protection. Phosphoenolpyruvate (PEP), adenosinetriphosphate (ATP), and fructose 6-phosphate (F6P), in decreasing order, are effective inhibitors. Zinc and Cobalt ions were effective inhibitors although cobalt ion was more potent; the two divalent metals were competitive inhibitors with respect to G6P, with $K_i$ values of $6.6\;{\mu}m$ and $4.7\;{\mu}m$ respectively. It is proposed that inhibition by divalent metal ions, at low NADPH /NADP ratio, is another means of controlling pentosephosphate pathway.

인삼사포닌 분획이 동물체(쥐)내에서의 에탄을 대사에 미치는 영향 (Effect of Ginseng Saponin Fraction on Ethanol Metabolism in Rat Liver)

  • 곽한식;주충노
    • Journal of Ginseng Research
    • /
    • 제12권1호
    • /
    • pp.76-86
    • /
    • 1988
  • 쥐에게 물대신 12% 에탄올(대조군) 또는 인삼사포닌 분획을 포함한 12% 에탄올(시험군)을 6일간 투여한 후 간과 혈청에서의 acetaldehyde 농도와 간의 [$NAD^+$]/ [NADH] 및 [$NADP^+$]/[NADPH] 비율을 조사하였다. 대조군의 간과 혈청의 acetaldehyde 농도는 물로 사육한 정상군에 비해 훨씬 높았으나 물대신 인삼사포닌을 포함한 에탄올을 투여한 시험군의 경우는 정상군에 비해 약간 높았을 뿐이었으며 [$NAD^+$]/ [NADH] 비의 감소율도 대조군보다는 시험군이 훨씬 작았다. l-$^{l4}C$]-ethanol을 함유한 10% ethanol을 1ml 복강으로 투여하고 30분 후의 간의 지방질의 방사능을 분석한 결과 시험군의 간 지방질의 전체 방사능은 대조군보다 훨씬 낮았고 인산지방질, 콜레스테롤, 지방산, 중성지방과 같은 지방질의 분석결과는 에탄올 투여로 인한 인산지방질 생합성 저하와 지방산 및 중성지방의 생합성 증가현상이 인삼사포닌의 투여로 개선되는 것으로 관찰되었다.

  • PDF

PHOSPHATE-DEFICIENCY REDUCES THE ELECTRON TRANSPORT CAPACITIES OF THYLAKOID MEMBRANES THROUGH LIMITING PHOTOSYSTEM II IN LEAVES OF CHINESE CABBAGE

  • Park, Youn-Il;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • 제1권2호
    • /
    • pp.95-105
    • /
    • 1994
  • Experiments were carried out to investigate whether P, deficiency in detached 25 mM mannose-feeding led to a decline of the photosynthetic electron transport rates through acidification of the thylakoid lumen. With increasing mannose-feeding time, the maximal CO2 exchange rates and the maximal quantum yields of photosynthesis decreased rapidly up to 6 h by 73% then with little decrease up to 12 h. The ATP/ADP ratio declined by 54% 6 h after the treatment and then recovered to the control level at 12 h. However, the NADPH/NADP~ ratio was not significantly altered by mannose treatment. Electron transport rates of thylakoid membranes isolated from 6 h treated leaves did not change, but they decreased by 30% in 12 h treated leaves. The quenching analysis of Chl fluorescence in mannose-treated leaves revealed that both the fraction of reduced plastoquinone and the degree of acidification of thylakoid lumen remained higher than those of the control. The reduction of PSI in mannose fed leaves was inhibited due to acidification of thylakoid lumen (high qE). The reduction of primary quinone acceptor of PSII was inhibited by mannose feeding. Mannose treatment decreased the efficiency of excitation energy capture by PSII. Fo quenching was induced when treated with mannose more than 6 h, and had a reverse linear correlation with (Fv)m/Fm ratio. These results suggest that Pi deficiency in Chinese cabbage leaves reduce photosynthetic electron transport rates by diminishing both PSII function and electron transfer from PSII to PSI through acidification ofthylakoid lumen, which in turn induce the modification of photosynthetic apparatus probably through protein (de)phosphorylation.

  • PDF

쥐에서 phenobarbital sodium 및 3-methylcholanthrene이 $^{14}C$-carbofuran의 독성과 in vitro 대사에 미치는 영향 (Effect of phenobarbital sodium and 3-methylcholanthrene on metabolism in vitro and toxicity of $^{14}C$-carbofuran in rat)

  • 한성수;임요섭
    • 농약과학회지
    • /
    • 제2권2호
    • /
    • pp.29-38
    • /
    • 1998
  • Phenobarbital sodium(PB) 또는 3-methylcholanthrene(3-MC)이 살충제 carbofuran의 쥐에 대한 독성과 이의 독성경감효과를 구명하기 위하여 이들을 단독 또는 조합으로 경구투여한 후 쥐의 생존율을 조사하였고, 쥐에서 carbofuran 의 in vitro 대사에 미치는 영향을 구명하기 위하여 쥐 간의 추출액에 이들을 단독 또는 조합으로 처리한 후 대사산물을 조사하였다. 쥐에 대한 carbofuran의 $LD_{50}$(96hrs)은 6.9 mg/kg이었고, 주 대사산물의 독성은 3-hydroxycarbofuran > 3-ketocarbofuran > 3-hydroxycarbofuran phenol 순으로 높게 나타났으며, 모화합물보다는 그 독성이 매우 낮았다. 쥐의 생존율은 carbofuran 8.4 mg/kg만을 투여했을 때 0%이었으나 carbofuran과 PB 또는 3-MC 20 mg/kg을 각각 조합투여시 $60{\sim}80%$로 높아졌고, 60 mg/kg 투여시에는 100% 생존하여 PB 및 3-MC의 carbofuran에 대한 독성경감 효과가 매우 컸다. 간 추출액에서 in vitro 대사의 대부분은 microsomal fraction에서 이루어지고 있었다. Carbofuran 단독처리시 주 대사산물은 3-hydroxycarbofuran이었으나 carbofuran과 PB 또는 3-MC 조합처리시 3-ketocarbofuran이었다. 또한, 기질 및 처리별 대사산물의 생성율을 조사한 결과 microsomal fraction에 carbofuran 단독 및 PB 또는 3-MC와의 조합처리 모두 co-factor로서 NADP+G-6-P+G-6-P-DG 첨가시(phase I system) 가장 높았고, $105,000{\times}g$ 상징액에서는 carbofuran 단독처리의 경우 co-factor로서 NADPH+ GSH 첨가시(phase II system)에 그리고 PB 또는 3-MC와 조합처리의 경우 co-factor 중 NADPH+FAD 첨가시(phase II system)에 가장 높았다. 대사산물 생성율은 carbofuran 단독처리보다 carbofuran과 PB 또는 3-MC 조합처리에서 $2{\sim}3$배 높았다.

  • PDF

Efficient Bioreduction of Ethyl 4-chloro-3-oxobutanoate to (S)4-chloro-3-hydrobutanoate by Whole Cells of Candida magnoliae in Water/ n-Butyl Acetate Two-phase System

  • Xua Zhinan;Fang Limei;Lin Jianping;Jiang Xiaoxia;Liu Ying;Cen Peilin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권1호
    • /
    • pp.48-53
    • /
    • 2006
  • The asymmetric biosynthesis of ethyl (S)-4-chloro-3-hydrobutanoate from ethyl 4-chloro-3-oxobutanoate was investigated by using whole cells of Candida magnoliae JX120-3 without the addition of glucose dehydrogenase or $NADP^+/NADPH$. In a one-phase system, the bioconversion yield was seriously affected on the addition of 12.1 g/L ethyl 4-chloro-3-oxobutanoate. In order to reduce this substrate inhibition, a water/ n-butyl acetate two-phase system was developed, and the bioreduction conditions optimized with regard to the yield and product enantiometric excess value. The optimal conditions were as following: water to n-butyl acetate volume ratio of 1:1, 4.0 g DCW/L active cells, 50 g/L glucose and $35^{\circ}C$. By adopting a dropwise substrate feeding strategy, high concentration of ethyl 4-chloro-3-oxobutanoate (60 g/L) could be asymmetrically reduced to ethyl (S)-4-chloro-3-hydrobutanoate with high yield (93.8%) and high enantiometric excess value (92.7%).

Comprehensive investigations of key mitochondrial metabolic changes in senescent human fibroblasts

  • Ghneim, Hazem K.;Alfhili, Mohammad A.;Alharbi, Sami O.;Alhusayni, Shady M.;Abudawood, Manal;Aljaser, Feda S.;Al-Sheikh, Yazeed A.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권4호
    • /
    • pp.263-275
    • /
    • 2022
  • There is a paucity of detailed data related to the effect of senescence on the mitochondrial antioxidant capacity and redox state of senescent human cells. Activities of TCA cycle enzymes, respiratory chain complexes, hydrogen peroxide (H2O2), superoxide anions (SA), lipid peroxides (LPO), protein carbonyl content (PCC), thioredoxin reductase 2 (TrxR2), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), reduced glutathione (GSH), and oxidized glutathione (GSSG), along with levels of nicotinamide cofactors and ATP content were measured in young and senescent human foreskin fibroblasts. Primary and senescent cultures were biochemically identified by monitoring the augmented cellular activities of key glycolytic enzymes including phosphofructokinase, lactate dehydrogenase, and glycogen phosphorylase, and accumulation of H2O2, SA, LPO, PCC, and GSSG. Citrate synthase, aconitase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, and complex I-III, II-III, and IV activities were significantly diminished in P25 and P35 cells compared to P5 cells. This was accompanied by significant accumulation of mitochondrial H2O2, SA, LPO, and PCC, along with increased transcriptional and enzymatic activities of TrxR2, SOD2, GPx1, and GR. Notably, the GSH/GSSG ratio was significantly reduced whereas NAD+/NADH and NADP+/NADPH ratios were significantly elevated. Metabolic exhaustion was also evident in senescent cells underscored by the severely diminished ATP/ADP ratio. Profound oxidative stress may contribute, at least in part, to senescence pointing at a potential protective role of antioxidants in aging-associated disease.

Synechocystis sp. PCC 6803의 에너지 대사 결함 돌연변이 균주에서의 Poly(3-hydroxybutyrate) 축적량 증진 (Enhanced PHB Accumulation in Photosystem- and Respiration-defective Mutants of a Cyanobacterium Synechocystis sp. PCC 6803)

  • 김수연;최강국;박연일;박영목;양영기;이영하
    • 미생물학회지
    • /
    • 제41권1호
    • /
    • pp.67-73
    • /
    • 2005
  • 본 연구에서는 남세균인 Synechocystis sp. PCC 6803 (Syn6803)을 대상으로 transposable element Tn5를 이용하여 획득된 1,200여 돌연변이주로부터 모균주에 비하여 PHB 축적량이 크게 증진된 균주를 선별하고, Tn5 삽입에 의해 결함을 나타낸 유전자를 확인함으로써 Syn6803에서의 PHB 생합성에 영향을 주는 세포내 생리학적 요인을 조사하고자 하였다. 모균주인 야생형 균주의 경우 질소원이 제한된 $BG11_0$ 배지에서의 PHB 생합성량이 건체량의 $4\%$ (w/w) 수준인데 반하여, $10-34\%$의 생합성량을 보이는 25개의 돌연변이 균주를 얻을 수 있었다. Inverse PCR을 이용하여, 선별된 돌연변이 균주내 돌연변이가 일어난 유전자를 조사한 결과, 아직까지 그 기능이 규명되지 않은 유전자가 대부분이었으나, NADH-ubiquinone oxidoreductase, O-succinylbenzoic-CoA ligase 또는 photosystem II PsbT protein과 같이 광합성과 호흡에 관여하는 유전자에 돌연변이가 일어난 4 균주와 histidine kinase가 결여된 1균주가 확인되었다. 이들 균주를 대상으로pulse-amplitude modulated fluorometer를 이용하여 세포내 $NAD(P)H/NAD(P)^+$비를 측정한 결과, 에너지 대사 흐름의 차단에 의해 세포내의 $NAD(P)HNAD(P)^+$비가 모균주에 비하여 현저하게 높은 것으로 나타났다. 이는 잉여의 전자로 포화된 세포, 즉 NAD(P)H에 의해 환원적 상태를 유지하고 있는 세포의 경우 PHB 축적 이 증진될 수 있음을 시사한다. 이러한 사실은 인위적으로 광합성과 호흡 관련 유전자가 제거되어 $NAD(P)H/NAD(P)^+$비가 높아진 것으로 알려진 다수의 Syn6803 돌연변이 균주들을 대상으로 PHB 생합성량을 조사한 결과로부터 재확인되었다.