• 제목/요약/키워드: NAD(P)H

검색결과 191건 처리시간 0.033초

Streptococcus sp. JEJ-6에 의한 가용성 전분으로부터 L-Lactic Acid 생성에 관한 연구 (Study on the Production of L-Latic Acid from Soluble Starch by Streptococcus sp. JEJ-6)

  • 전홍기;조영배;전은주;백형석
    • 한국식품영양과학회지
    • /
    • 제27권3호
    • /
    • pp.425-432
    • /
    • 1998
  • The strain producing L-lactic acid from starch was isolated from kimchi. The isolated strain was identified as a homofermentative Streptococcus sp. through its morphological, cultural, biochemical characteristics, and named Streptococcus sp. JEJ-6. Lactic acids are of two types, one L-specific and the other D-specific form in a stereospecific form. Streptococcus sp. JEJ-6 produced selectively L-lactic acid from all of the tested carbon sources. The optimum conditions for the L-lactic acid production from the isolated microorganism were determined. For the maximum yield of L-lactic acid from Streptococcus sp. JEJ-6, the cell should be harvested at the early stationary phase, and the growth temperature, pH, and NaCl concentration should be 37$^{\circ}C$, pH 7.0 and 0.1%, respectively. 4% Soluble starch as substrate and organic nitrogen sources such as peptone and yeast extract should be used for the best yield. The optimum pH of the nicotinamide adenine dinucleotide(NAD)-dependent and NAD-independent lactate dehydrogenase(LDH) activities was pH 8.5 and pH 7.0, respectively.

  • PDF

해당과정의 활성화를 통한 무세포 단백질 발현 시스템에서의 ATP 재생 (Regeneration of ATP through an Activated Glycolytic Pathway in a Cell-free Extract and its Application for Protein Expression)

  • 김동명;금정원;김태완;오인석;최차용
    • KSBB Journal
    • /
    • 제19권6호
    • /
    • pp.467-470
    • /
    • 2004
  • 해당 작용의 중간체를 에너지원으로 이용한 무세포 단백질 발현 반응에서의 낮은 재현성 및 단백질 생산성은 반응액의 pH 및 NAD의 존재에 의해 크게 영향을 받는다는 사실을 밝혀내었다. 기존의 PEP를 사용하는 표준반응 용액에서 PEP를 G-6-P로 대체하고 동시에 반응액의 pH 및 NAD 농도를 최적화 함으로써 반응액 1 mL당 약 $300{\mu}g$에 이르는 단백질을 회분식 반응으로 발현할 수 있었다. ATP 재생 방법의 개선을 통한 회분식 무세포 단백질 발현의 생산성 향상은 다종 유전자의 고속 번역을 통한 기능 규명에 있어서 유용한 도구로서 사용될 수 있을 것으로 기대된다.

Rhodobacter sphaeroides 2.4.1 내의 pyridine nucleotide와 quinone pool의 redox 상태와 광합성기구의 합성과의 상관관계 (Relationship of the Redox State of Pyridine Nucleotides and Quinone Pool with Spectral Complex Formation in Rhodobacter sphaeroides 2.4.1)

  • 고인정;오정일
    • 생명과학회지
    • /
    • 제19권7호
    • /
    • pp.852-858
    • /
    • 2009
  • 호흡전자전달계의 cytochrome bc$_1$ complex 또는 cytochrome c oxidase가 기능을 하지 않는 Rhodobacter sphaeroides mutant 내에서 pyridine nucleotide[NAD(P)H와 NAD(P)$^+$]의 농도와 redox 상태는 wild type과 비교할 때 큰 변화가 없었다. 높은 산소분압 조건에서 키운 Rhodobacter sphaeroides cbb$_3$ oxidase mutant 내에서 PrrBA two-component system에 의해서 조절되는 puf 오페론의 발현은 pyridine nucleotide나 전자전달계의 ubiquinone/ubiquinol pool의 redox 상태의 변화에 의해 유도된 것이 아니다. R. sphaeroides cytochrome bc$_1$ complex mutant를 이용하여 광합성기구 합성에 대한 cbb$_3$ cytochrome c oxidase의 억제 효과는 ubiquinone/ubiquinol pool의 redox 변화에 의해 간접적으로 일어나는 것이 아님을 증명하였다.

Potential Induction of Quinone Reductase Activity of Natural Products in Cultured Murine Hepa1c1c7 Cells

  • Heo, Yeon-Hoi;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • 제7권2호
    • /
    • pp.38-44
    • /
    • 2001
  • NAD(P)H:quinone reductase (QR), known as DT-diaphorase, is a kind of detoxifying phase II metabolic enzyme catalyzing hydroquinone formation by two electron reduction pathway from quinone type compounds, and thus facilitating excretion of quinoids from human body. With the usefulness of QR induction activity assay system for the modulation of toxicants, in the course of searching for cancer chemopreventive agents from natural products, the methanolic extracts of approximately two hundreds of oriental medicines were primarily evaluated using the induction potential of quinone reductase (QR) activity in cultured murine Hepa1c1c7 cells. As a result, several extracts including Hordeum vulgare, Momordica cochinchinensis, Strychnos ignatii, Houttuynia cordata, and Polygala japonica were found to significantly induce QR activity. In addition, the methylene chloride fraction of H. vulgare, one major dietary food source, showed potent induction of QR activity $(CD=6.4{\mu}g/ml)$. Further study for isolation of active principles from these lead extracts is warranted for the discovery of novel cancer chemopreventive agents.

  • PDF

A Strategy to Increase Microbial Hydrogen Production, Facilitating Intracellular Energy Reserves

  • Lee, Hyo Jung;Park, Jihoon;Lee, Joo-Young;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권8호
    • /
    • pp.1452-1456
    • /
    • 2016
  • Overexpression of the genes encoding phosphoeneolpyruvate carboxykinase (pckA) and NAD-dependent malic enzyme (maeA) facilitates higher intracellular ATP and NAD(P)H concentrations, respectively, under aerobic conditions in Escherichia coli. To verify a hypothesis that higher intracellular energy reserves might contribute to H2 fermentation, wild-type E. coli strains overexpressing pckA and maeA were cultured under anaerobic conditions in a glucose minimal medium. Overexpression of pckA and maeA enabled E. coli to produce 3-times and 4-times greater H2 (193 and 284 nmol, respectively) than the wild type (66 nmol H2). The pckA and maeA genes were further overexpressed in a hydrogenase-3-enhanced E. coli strain. The hydrogenase-3-enhanced strain (W3110+fhlA) produced 322 nmol H2, whereas the ATP-enhanced strain (W3110+fhlA+pckA) produced 50% increased H2 (443 nmol). Total H2 in the NAD(P)H-enhanced strain (W3110+fhlA+maeA) was similar to that in the control strain at 319 nmol H2. Possible explanations for the contribution of the increased cellular energy reserves to the enhanced hydrogen fermentation observed are discussed based on the viewpoint of metabolic engineering strategy.

15-Deoxy-${\Delta}^{12,14}$-Prostaglandin $J_2$ Upregulates the Expression of LPS-Induced IL-8/CXCL8 mRNA in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats

  • Kim, Jung-Hae;Kim, Hee-Sun
    • IMMUNE NETWORK
    • /
    • 제9권2호
    • /
    • pp.64-73
    • /
    • 2009
  • Background: 15d-$PGJ_2$ has been known to act as an anti-inflammatory agent and has anti-hypertensive effects. As a result of these properties, we examined the effect of 15d-$PGJ_2$ on the LPS-induced IL-8/CXCL8 mRNA expression in VSMCs from SHR. Methods: Effect and action mechanism of 15d-$PGJ_2$ on the expression of LPS-induced IL-8/CXCL8 mRNA in VSMCs from SHR and WKY were examined by using real-time polymerase chain reaction, electrophoretic mobility shift assay for NF-${\kappa}B$ avtivity, Western blotting analysis for ERK and p38 phosphorylation and flow cytometry for NAD(P)H oxidase activity. Results: 15d-$PGJ_2$ decreased the expression of LPS-induced IL-8/CXCL8 mRNA in WKY VSMCs, but increased the expression of LPS-induced IL-8/CXCL8 mRNA in SHR VSMCs. The upregulatory effect of 15d-$PGJ_2$ in SHR VSMCs was mediated through PPAR${\gamma}$, and dependent on NF-${\kappa}B$ activation and ERK phosphorylation. However, inhibition of the p38 signaling pathway augmented the upregulatory effect of 15d-$PGJ_2$ on LPS-induced IL-8/CXCL8 mRNA. A NAD(P)H oxidase inhibitor inhibited the upregulatory effect of 15d-$PGJ_2$ on LPS-induced IL-8/CXCL8 mRNA expression in SHR VSMCs, and an increase in NAD(P)H oxidase activity was detected in SHR VSMCs treated with 15d-$PGJ_2$/LPS. Conclusion: Our results indicate that the upregulatory effect of 15d-$PGJ_2$ on LPS-induced IL-8/CXCL8 expression in SHR VSMCs is mediated through the PPAR${\gamma}$ and ERK pathway, and may be related to NAD(P)H oxidase activity. However, p38 inactivation may also play an important role in 15d-$PGJ_2$/LPS-induced IL-8/CXCL8 expression in SHR VSMCs.

NAD(P)H-quinone oxidoreductase-1 silencing modulates cytoprotection related protein expression in cisplatin cytotoxicity

  • Park, Se Ra;Jung, Ju Young;Kim, Young-Jung;Jung, Da Young;Lee, Mee Young;Ryu, Si Yun
    • 대한수의학회지
    • /
    • 제56권1호
    • /
    • pp.15-21
    • /
    • 2016
  • NAD(P)H-quinone oxidoreductase-1 (NQO1) is a down-stream target gene of nuclear factor erythroid 2-related factor 2 (Nrf2), and performs diverse biological functions. Recently, NQO1 is recognized as an effective gene for the cytotoxic inserts with its diverse biological functions, which is focused on antioxidant properties. The aim of present study was to assess the impact of NQO1 knockdown on cytoprotection-related protein expression in cisplatin cytotoxicity by using small interfering (si) RNA targeted on NQO1 gene. Cytotoxicity of cisplatin on ACHN cells was assessed in a dose- and time-dependent manner after siScramble or siNQO1 treatment. After cisplatin treatment, cells were subjected to cell viability assay, western-blot analysis, and immunofluorescence study. The cell viability was decreased in the siNQO1 cells (50%) than the siScramble cells (70%) after 24 h of cisplatin ($20{\mu}M$) treatment. Moreover, cytoprotection-related protein expressions were markedly suppressed in the siNQO1 cells after cisplatin treatment. The expression of Nrf2 and Klotho were decreased by 20% and 40%, respectively, of that in siScramble cells. Nrf2 and Klotho activation were also decreased in cisplatin treated siNQO1 cells, confirmed by cytoplasm-tonuclear translocation. Our findings demonstrate that the increased cisplatin-induced cytotoxicity was accompanied by suppressed Nrf2 activation and Klotho expression in siNQO1 cells.

Dissolution Characteristics of ph-Dependent Antacid Granules Agglomerated in High Speed Agitation Type Speed Agitation Type Granulator

  • Choi, Woo-Sik;Lee, Jung-Sun
    • Archives of Pharmacal Research
    • /
    • 제18권5호
    • /
    • pp.314-319
    • /
    • 1995
  • Antacid granules were prepared by agglomeration and powder method in high speed agitation type granulator. The copmositions of the test antacids were sodium bicarbonate nad magnesium carbonate nad a coating material was powder of polyvinylacetal diethyl-aminocacetate (AEA) and an additive material was talc powder. The dissolution characteristics of base from the antacid granules were investigated to evaluate neutralization capacity of hydrochloric profile of base and neutralization behavior, the following results were obtained : The prepared granules showed a pH-dependent dissolution pattern of a base. The dissolution profile of a base was varied with addition of talc powder as well as coating amount of AEA. The relationship between the ratio of dissolution retarded time for 20% and 10% AEA. The relationship between the ratio of dissolution retarded time for 20% AEA coated granules $\theta_{20}/\theta_{10}$ and the diameter reduction of the granules was explained by the rate process of neutralization of hydrochloric acid.

  • PDF

Enhancement of radiation effect using beta-lapachone and underlying mechanism

  • Ahn, Ki Jung;Lee, Hyung Sik;Bai, Se Kyung;Song, Chang Won
    • Radiation Oncology Journal
    • /
    • 제31권2호
    • /
    • pp.57-65
    • /
    • 2013
  • Beta-lapachone (${\beta}$-Lap; 3,4-dihydro-2, 2-dimethyl-2H-naphthol[1, 2-b]pyran-5,6-dione) is a novel anti-cancer drug under phase I/II clinical trials. ${\beta}$-Lap has been demonstrated to cause apoptotic and necrotic death in a variety of human cancer cells in vitro and in vivo. The mechanisms underlying the ${\beta}$-Lap toxicity against cancer cells has been controversial. The most recent view is that ${\beta}$-Lap, which is a quinone compound, undergoes two-electron reduction to hydroquinone form utilizing NAD(P)H or NADH as electron source. This two-electron reduction of ${\beta}$-Lap is mediated by NAD(P)H:quinone oxidoreductase (NQO1), which is known to mediate the reduction of many quinone compounds. The hydroquinone forms of ${\beta}$-Lap then spontaneously oxidizes back to the original oxidized ${\beta}$-Lap, creating futile cycling between the oxidized and reduced forms of ${\beta}$-Lap. It is proposed that the futile recycling between oxidized and reduced forms of ${\beta}$-Lap leads to two distinct cell death pathways. First one is that the two-electron reduced ${\beta}$-Lap is converted first to one-electron reduced ${\beta}$-Lap, i.e., semiquinone ${\beta}$-Lap $(SQ)^{{\cdot}-}$ causing production of reactive oxygen species (ROS), which then causes apoptotic cell death. The second mechanism is that severe depletion of NAD(P)H and NADH as a result of futile cycling between the quinone and hydroquinone forms of ${\beta}$-Lap causes severe disturbance in cellular metabolism leading to apoptosis and necrosis. The relative importance of the aforementioned two mechanisms, i.e., generation of ROS or depletion of NAD(P)H/NADH, may vary depending on cell type and environment. Importantly, the NQO1 level in cancer cells has been found to be higher than that in normal cells indicating that ${\beta}$-Lap may be preferentially toxic to cancer cells relative to non-cancer cells. The cellular level of NQO1 has been found to be significantly increased by divergent physical and chemical stresses including ionizing radiation. Recent reports clearly demonstrated that ${\beta}$-Lap and ionizing radiation kill cancer cells in a synergistic manner. Indications are that irradiation of cancer cells causes long-lasting elevation of NQO1, thereby sensitizing the cells to ${\beta}$-Lap. In addition, ${\beta}$-Lap has been shown to inhibit the repair of sublethal radiation damage. Treating experimental tumors growing in the legs of mice with irradiation and intraperitoneal injection of ${\beta}$-Lap suppressed the growth of the tumors in a manner more than additive. Collectively, ${\beta}$-Lap is a potentially useful anti-cancer drug, particularly in combination with radiotherapy.

Effects of Natural Products on the Induction of NAD(P)H: Quinone Reductase in Hepa 1c1c7 Cells for the Development of Cancer Chemopreventive Agents

  • Kim, Young-Mi;Chang, Il-Moo;Mar, Woong-Chon
    • Natural Product Sciences
    • /
    • 제3권2호
    • /
    • pp.81-88
    • /
    • 1997
  • NAD(P)H:quinone reductase (QR) is one of the protective phase II enzymes against toxicity that accomplishes the capacity of detoxification by modulating the effects of mutagens and carcinogens. The detoxification mechanism is that quinone reductase promotes the 2-electron reduction of quinones to hydroquinones which are less reactive. This study is to search new inducers of quinone reductase from natural products, which can be used as cancer chemopreventive agents. Plant extracts were evaluated by using quinone reductase generating system With Hepa 1c1c7 murine hepatoma cell lines for enzyme inducing properties and crystal violet staining method for the measurement of cytotoxicity provoked. We have tested approximately 106 kinds of natural products after partition into n-hexane, ethyl acetate and aqueous layers from 100% methanol extracts of natural products. The ethyl acetate fractions of Vitex rotundifolia $(fruits,\;2FC:\;12.7\;{\mu}g/ml)$, Cnidium officinale $(aerial\;parts,\;2FC:\;10.5\;{\mu}g/ml)$, Chrysanthemum sinese $(flowers,\;2FC:\;17.4{\mu}g/ml)$ and the hexane fractions of Angelica gigas $(roots,\;2FC:\;13.2\;{\mu}g/ml)$, Smilax china $(roots,\;2FC:\;l1.9\;{\mu}g/ml)$, Sophora flavescens $(roots,\;2FC:\;16.3\;{\mu}g/ml)$ revealed the significant induction of quinone reductase in a murine hepatic Hepa 1c1c7 cell culture system.

  • PDF