• 제목/요약/키워드: NACA

검색결과 358건 처리시간 0.023초

전산유체역학을 이용한 수치 최적설계 (Numerical optimization design by computational fluid dynamics)

  • 이정우;문영준
    • 대한기계학회논문집B
    • /
    • 제20권7호
    • /
    • pp.2347-2355
    • /
    • 1996
  • Purpose of the present study is to develop a computational design program for shape optimization, combining the numerical optimization technique with the flow analysis code. The present methodology is then validated in three cases of aerodynamic shape optimization. In the numerical optimization, a feasible direction optimization algorithm and shape functions are considered. In the flow analysis, the Navier-Stokes equations are discretized by a cell-centered finite volume method, and Roe's flux difference splitting TVD scheme and ADI method are used. The developed design code is applied to a transonic channel flow over a bump, and an external flow over a NACA0012 airfoil to minimize the wave drag induced by shock waves. Also a separated subsonic flow over a NACA0024 airfoil is considered to determine a maximum allowable thickness of the airfoil without separation.

2차원 해면효과의 수치계산 (Numerical Simulation of 2-D Wing-In-Ground Effect)

  • ;신명수
    • 한국전산유체공학회지
    • /
    • 제3권1호
    • /
    • pp.54-62
    • /
    • 1998
  • 본 논문은 2차원 해면효과의 수치계산 결과를 정리하였다. 지면으로부터의 높이변화에 따른 점성유동장을 계산하기 위하여 지배방정식으로는 비압축성 RANS 방정식을, 시간에 대하여서는 음해법으로 프로그램을 구성하였다. 압력항은 가상압축성과 4차 수치확산항을 추가하는 것에 의해 계산하였으며, 높은 레이놀즈 수에서의 효과적인 계산을 위해 Baldwin- Lomax 난류모델을 도입하였다. 해면효과가 없는 무한유중에서의 NACA-0012 단면 계산결과를 실험 데이터와 비교하는 것에 의해 프로그램의 타당성을 확인하였다. NACA-6409와 두께 비 4.6%의 날개에 대하여 해면효과를 고려한 계산을 수행하였다. 계산결과, 높이의 변화에 따라 계산된 무차원계수, 압력 및 속도분포는 해면효과의 특성을 잘 보여주고 있다.

  • PDF

NACA 0021 익형 유동장의 수치해석적 연구 (A Numerical Study on the Flowfield around a NACA 0021 Airfoil at Angles of Attack)

  • 김상덕
    • 한국항공운항학회지
    • /
    • 제24권4호
    • /
    • pp.20-25
    • /
    • 2016
  • A primary benefit of flight at high angle-of-attack conditions is to be able to reduce the speed of flight and maneuvers, which can enhance the capability of sensing and obstacle avoidance for a small UAV. The flight at high angle-of-attack conditions, however, is easy to be beyond stall which is characterized by substantial flow separation over an airfoil. Current numerical analysis was conducted on the capabilities of three representative turbulence models to predict the aerodynamic characteristics of a typical airfoil at angle-of-attack conditions. The investigation shows that these turbulence models provide good comparison with experimental data for attached flow at moderate angle-of-attack conditions. Calculation by current turbulence models are, however, not appropriate at high angle-of-attack conditions with flow separation.

플랩현상 변화에 따른 파력발전용 웰즈터빈의 형상설계에 관한 연구(1) (A Study on the Design of Wells Turbine for Wave Power Conversion by Various Flap Shape (1))

  • 김동균;김정환;최윤환;배석태;이연원;이영호
    • 한국CDE학회논문집
    • /
    • 제9권3호
    • /
    • pp.253-259
    • /
    • 2004
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA0015 Wells turbine. The five double flaps which have 0.5% difference were selected. A Navier-Stokes code, CFX-TASCflow, was used to calculate the flow field of the Wells turbine. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the three dimension numerical grid is based upon that of an experimental test rig. This paper tries In optimized disign the double flap of Wells turbine with the numerical analysis.

천음속 익형에서 발생하는 응축충격파의 피동제어에 의한 항력 감소 (Drag Reduction by Passive Control of Condensation Shock Wave in a Transonic Airfoil)

  • 백승철;최영상;권순범;이충원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1998년도 제11회 학술강연회논문집
    • /
    • pp.10-10
    • /
    • 1998
  • 천음속 익형에서 발생하는 응축충격파와 경계층의 간섭을 피동제어 하여 항력감소에 대한 연구를 2.5$\times$7$\textrm{cm}^2$ 천음속 풍동에서 수행하였다. 익형표면에 설치한 정압공으로 정압을, 익형후방에 설치한 8개의 Pitot probe로 전압을 동시에 측정하여 충격파를 통한 에너지의 손실과 항력의 변화를 계산하였고, 또한 유동장과 충격파의 형상을 가시화하기 위해 슈리렌 가시화 시스템을 사용하였다. 실험은 NACA 0012 익형에서 기공률 변화에 따른 피동제어의 항력감소 초과를 조사한 다음 NACA 64-018 익형에서는 기공률과 공동의 크기의 변화가 미치는 효과를 연구하였다. 피동제어의 개념은 충격파가 발생하는 하부벽을 다공벽으로 만들고 그 아래를 공동으로 만들면 충격파 후방의 상대적으로 높은 압력이 기류의 일부를 공동으로 자연스럽게 유입시키고 다시 공동에서 낮은 압력의 충격파 상류로 유출시키는 것이다.

  • PDF

3차원 표면효과익의 자유표면 효과에 관한 수치연구

  • 곽승현
    • 한국해양공학회지
    • /
    • 제12권2호통권28호
    • /
    • pp.79-86
    • /
    • 1998
  • A three-dimensional WIG (Wing In Ground effect) moving above free surface is numerically studied by means of finite difference techniques. The air flow field around the WIG is analyzed by MAC (Marker & Cell) method, and interactions between WIG and the free surface are appeared as the variation of pressure distribution acting on the free surface. To analyze the wavemaking phenomena by those pressure distributions, the NS (Navier-Stokes) solver is employed in which nonlinearities of the free surface conditions can be included. Through the numerical simulation, Cp values and lift/drag ratio are carefully reviewed by changing the height/chord ratio. The section shape of model is NACA0012 with the span/chord ratio of 3.0. Through computational results, it is confirmed that the effect of free surface is small enough to treat it as a rigid wavy wall.

  • PDF

캐비테이팅 유동 해석 코드 개발 (DEVELOPMENT OF CAVITATING FLOW ANALYSIS CODE)

  • 양승용;명현국
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.122-126
    • /
    • 2010
  • The Rayleigh Plesset based cavitation model(Singhal et al., 2002) is reproduced through a pressure-based finite-volume numerical method using unstructured hexagonal mesh, which is developed by the author. In the process of reproduction, a mass conservation problem by the large density changes associated with phase change, which wasn't mentioned by them, has been exposed. One resolution about it is proposed and then cavitating flow characteristics around a hydrofoil (NACA66) for evaluation of the code are investigated. The computational results are verified by the comparison with the experimental results and show good agreements with them.

  • PDF

잠수물체에 의하여 발생되는 비선형파의 수치 시뮬레이션 (Numerical Simulations of Nonlinear Waves Generated by Submerged Bodies)

  • 강국진
    • 한국전산유체공학회지
    • /
    • 제2권1호
    • /
    • pp.13-20
    • /
    • 1997
  • A fundamental study for the numerical scheme to simulate unsteady nonlinear waves by solving Euler equations is presented. First a conservation form and a non-conservation form of the Euler equations with a free surface fitted coordinate system are compared. Next, a time splitting fractional step method and an alternating direction implicit(ADI) method for the time integration are compared. For the comparative study, flow calculations around a bottom bump in a channel and a NACA 0012 hydrofoil in a flume are performed. The results show that the ADI method with a third order upwind differencing scheme is very efficient in reducing the computing time with keeping the accuracy, And, there is no distinct difference between two expression forms except that the non-conservative form shows faster wave propagating velocity than the conservation form. Some results are compared with experiments and show good agreement.

  • PDF

두께 변화가 있는 익형을 이용한 flapping-Airfoil의 공력성능 개선 (The Improvement of Aerodynamic Performance of Flapping-Airfoil Using Thickness Variation Airfoil)

  • 이정상;김종암;노오현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.787-790
    • /
    • 2002
  • In this work, numerical experiments ave conducted to find out the optimal shape of flapping-airfoil using thickness variation airfoils. In the previous study of flapping-airfoil, we had found that the thrust efficiency of thicker airfoil is better than thinner one, but the latter has higher thrust coefficient. Therefore, we have combined thin(NACA0009) and thick(NACA0015)airfoil to overcome these demerits of each airfoil. Using this combined airfoil, we can achieve acceptable aerodynamic performances from thrust efficiency and coefficient points of view. In order to computational study, we have used parallel-implemented incompressible Wavier-Stokes solver. Computational results show how to design leading and trailing edge shapes.

  • PDF

3차원 PAR WIG (Powder Augmented Ram Wing in Ground Effect) 의 수치연구 (Flow analysis of 3-Dimensional Power-Augmented Ram Wing in Ground Effect)

  • 곽승현
    • 한국해양공학회지
    • /
    • 제11권1호
    • /
    • pp.55-64
    • /
    • 1997
  • A wing operating in close proximity to the ground exhibits a reduction in induced drag, which increase the lift/drag ratio. The poert-augmented ram (RAR) phenomenon involves directiing the efflux from forward mounted propulsion ststem under the wings, with the efflux nearly stagnated under the wings. In the present paper, 3 dimentional PAR was numerically studied by solving the Navier-Stokes equations. Pressure distribution and velocity vectors are calculated around the wing surface and the ground. Through the numerical simulation, Cp values and lift/drag ratio are carefully reviewed by changing the height/chord; 0.05, 0.1, 0.3 and 0.8. The shape of model is NACA 0012 with a span/chord ratio of 3.0. According to the numerical results, the relationship between lift/drag and height/chord is fairly reasonable.

  • PDF