• Title/Summary/Keyword: NAC

Search Result 522, Processing Time 0.031 seconds

Identification of Potential Substrates of N-acteylglucosamine Kinase by a Proteomic Approach (프로테오믹스를 이용한 N-아세틸글루코사민 인산화효소 기질단백질의 동정)

  • Lee, HyunSook;Moon, Il Soo
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.586-594
    • /
    • 2013
  • Post-translational O-GlcNAc modification (O-GlcNAcylation) of serine or threonine is a new protein modulation mechanism. In contrast to the classical glycosylation, O-GlcNAcylation occurs in a one-step transfer of O-GlcNAc on both nuclear and cytoplasmic proteins. In contrast to the general consensus that O-GlcNAc is a final modification, a recent paper (J Proteome Res. 2011 10:2725-2733) showed the presence of O-GlcNAc-P on a synaptic assembly protein AP180. This finding raises a fundamental question about its prevalence. To address this question, we used proteomics to identify those proteins that were phospho-signal enriched by GlcNAc kinase (NAGK). Comparison of pDsRed2-$NAGK_{WT}$-transfected HEK293T cell extract with pDsRed2-$NAGK_{D107A}$-transfected control culture revealed 15 phospho-signal increased spots. Excluding those spots that had no detectable amount of protein expression yielded 7 spots, which were selected for ID determination. Among these, two duplicate spots (two $HSP90{\beta}$ and two ENO1 spots) were shown to be O-GlcNAcylated, two (dUTP nucleotidohydrolase mitochondrial isoform 2, glutathione S-transferase P) were not known to be involved in O-GlcNAcylation, and one (heat shock protein gp96 precursor or grp94) was a glycoprotein. The increase in the phospho-levels of O-GlcNAc by NAGK strongly indicates that these proteins are phosphorylated on O-GlcNAc. Our present data support the idea that O-GlcNAc is not a terminal modification.

A transcription factor "OsNAC075" is essential for salt resistance in rice (Oryza sativa L.)

  • Jung, Yu-Jin;Lee, Myung-Chul;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.94-104
    • /
    • 2011
  • Salt stress is a major environmental factor influencing plant growth and development. To identify salt tolerance determinants, we systematically screened salt sensitive rice mutants by use of the Activator/Dissociation (Ac/Ds) transposon tagging system. In this study, we focused on the salt sensitive mutant line, designated SSM-1. A gene encoding a NAC transcription factor homologue was disrupted by the insertion of a Ds transposon into SSM-1 line. The OsNAC075 gene (EU541472) has 7 exons and encodes a protein (486-aa) containing the NAC domain in its N-terminal region. Sequence comparison showed that the OsNAC075 protein had a strikingly conserved region at the N-terminus, which is considered as the characteristic of the NAC protein family. OsNAC075 protein was orthologous to Arabidopsis thaliana ANAC075. Phylogenetic analysis confirmed OsNAC075 belonged to the OsNAC3 subfamily, which plays an important role in response to stress stimuli. RT-PCR analysis showed that the expression of OsNAC075 gene was rapidly and strongly induced by stresses such as NaCl, ABA and low temperature ($4^{\circ}C$). Our data suggest that OsNAC075 holds promising utility in improving salt tolerance in rice.

The Potential 'O-GlcNAc-P'om' ('O-GlcNAc-P'om'의 존재 가능성)

  • Moon, Il Soo;Lee, HyunSook;Lee, Hyung Jong
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.324-331
    • /
    • 2013
  • The addition and removal of N-acetylglucosamine (GlcNAc) molecules on serine or threonine residues of a protein is called O-GlcNAcylation. This post-translational modification occurs on both cytoplasmic and nuclear protein, and is fast and reversible as comparable to phosphorylation. In contrast to the phospho-signaling cycles, this emerging moon-lightening signaling is cycled by only two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). The simple machinery is a good evolutionary adaptation of a cell for quick accommodation to continuously fluctuating intra- and extracellular microenvironments. Rather than "switching" on or off a specific proteins - this would be done by phosphorylation where numerous specific kinases and phosphatases are involved - O-GlcNAcylation would play a "rheostat" which would be much more delicately increase or decrease the efficacy of signal transductions in response to cellular nutrient and stress conditions. Interestingly, recent evidence indicates that O-GlcNAc is further modified by phosphorylation. The O-GlcNAc-P will upgrade the modulation efficiency of cellular processes to continuous 'analogue' level. So far, only one protein AP180 was reported to have O-GlcNAc-P on Thr310. But, proteomic data from our laboratory indicate that there are multiple O-GlcNAc-P proteins, constituting "O-GlcNAc-P'om". This will focus on the possibility of existence of "O-GlcNAc-P'om".

Direct synthesis of Neu5Ac from GlcNAc using NALasc and GlcNAc 2-epimerase

  • Lee, Jeong-Gyu;Lee, Jeong-O;Lee, Seon-Gu;Kim, Byeong-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.210-214
    • /
    • 2001
  • GlcNAc 2-epimerase gene from human was cloned. However GIcNAc 2-epimerase was expressed in E. coli as inclusion body formation. Several approaches were tried such as expression in low temperature and low concentration of IPTG. With these treatments production of active form of human GIcNAc 2-epimerase ι ,vas enhanced. For the direct synthesis of NeuAc from GlcNAc and pyruvate, NALase and GlcNAc 2-epimerase were characterized in terms of temperature effect on activity. equilibrium and stability, inhibition by pyruvate etc. For cheap and ease preparation of both the NALase and GlcNAc 2-epimerase, pEN24ma vector was made. which express both the NALasc and GIcNAc 2-epimerase simultaneously. In addition, E. coli BL21(DE3) harboring two plasmids was also made. Of the two systems, the latter was better for the expression of both enzymes.

  • PDF

A Case Study on NAC System Implementation for Infringement Prevention of Information Assets (정보자산 침해방지를 위한 NAC 구축 사례 연구)

  • Song, Yung Min;Hong, Soon Goo;Kim, Hyun Jong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.6
    • /
    • pp.107-117
    • /
    • 2014
  • The importance of a network security to protect infringement of corporate assets has been issued due to the increasing various threats such as warm virus, vicious codes, and hacking. Thus, the goal of this research is to discover the procedure and methods for a NAC system implementation. In this case study, we suggest that the critical management issues during the implementing a NAC system as well as measure its performance in qualitative and quantitative perspective. The contribution of this paper is both to lead to the further research in this network security field and to provide a guideline for companies willing to introduce a NAC system.

Cell Survival and Expression of Superoxide Dismutase and Catalase Genes in Saccharomyces cerevisiae Treated with N-acetyl-L-cysteine and Ionizing Radiation (Saccharomyces cerevisiae에서 이온화 방사선과 N-acetyl-L-cysteine 처리에 따른 세포 생존과 Superoxide Dismutase와 Catalase 유전자 발현)

  • Park, Ji-Young;Baek, Dong-Won;Nili, Mohammad;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • N-acetyl-L-cysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. NAC used as a radioprotector against ionizing radiation (IR)-induced injury and damage. The aim of this study was to evaluate the radioprotective effects of NAC against IR-induced cell damage in Saccharomyces cerevisiae and the antioxidative effect of NAC on transcriptional level of yeast antioxidant enzyme genes such as superoxide dismutase (SOD) and catalase. In the present study, yeast cells were pretreated with various concentrations of NAC and/or irradiated with various doses of gamma rays. The cell viability was measured by counting the cell forming unit (CFU). The quantitative real-time PCR was performed for analysis of gene expression of SOD and catalase. The viability of irradiated cells was not improved by pretreatment with NAC. Ionizing radiation with 100 Gy highly induced the gene expression of antioxidant enzymes. In the irradiated group with NAC pretreatment, the gene expression of SOD and catalase was gradually reduced with the increased concentrations of NAC. These results indicate that NAC can act as a useful antioxidant to scavenge reactive oxygen species in vivo, but does not protect cells against IR-induced cell death in S. cerevisiae.

ppGalNAc T1 as a Potential Novel Marker for Human Bladder Cancer

  • Ding, Ming-Xia;Wang, Hai-Feng;Wang, Jian-Song;Zhan, Hui;Zuo, Yi-Gang;Yang, De-Lin;Liu, Jing-Yu;Wang, Wei;Ke, Chang-Xing;Yan, Ru-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5653-5657
    • /
    • 2012
  • Objectives: To investigate the effect of glycopeptide-preferring polypeptide GalNAc transferase 1 (ppGalNAc T1 ) targeted RNA interference (RNAi) on the growth and migration of human bladder carcinoma EJ cells in vitro and in vivo. Methods: DNA microarray assays were performed to determine ppGalNAc Ts(ppGalNAc T1-9) expression in human bladder cancer and normal bladder tissues. We transfected the EJ bladder cancer cell line with well-designed ppGalNAc T1 siRNA. Boyden chamber and Wound healing assays were used to investigate changes of shppGalNAc T1-EJ cell migration. Proliferation of shppGalNAc T1-EJ cells in vitro was assessed using [3H]-thymidine incorporation assay and soft agar colony formation assays. Subcutaneous bladder tumors in BALB/c nude mice were induced by inoculation of shppGalNAc T1-EJ cells and after inoculation diameters of tumors were measured every 5 days to determine gross tumor volumes. Results: ppGalNAc T1 mRNA in bladder cancer tissues was 11.2-fold higher than in normal bladder tissues. When ppGalNAc T1 expression in EJ cells was knocked down through transfection by pSUPER-shppGalNAc T1 vector, markedly reduced incorporation of [3H]-thymidine into DNA of EJ cells was observed at all time points compared with the empty vector transfected control cells. However, ppGalNAc T1 knockdown did not significantly inhibited cell migration (only 12.3%). Silenced ppGalNAc T1 expression significantly inhibited subcutaneous tumor growth compared with the control groups injected with empty vector transfected control cells. At the end of observation course (40 days), the inhibitory rate of cancerous growth for ppGalNAc T1 knockdown was 52.5%. Conclusion: ppGalNAc T1 might be a potential novel marker for human bladder cancer. Although ppGalNAc T1 knockdown caused no remarkable change in cell migration, silenced expression significantly inhibited proliferation and tumor growth of the bladder cancer EJ cell line.

Generation of Bacterial Blight Resistance Rice with Transcription Factor OsNAC69-overexpressing (전사인자 OsNAC69-과발현을 통한 흰잎마름병 저항성 벼 제작)

  • Park, Sang Ryeol;Cha, Eun-Mi;Moon, Seok Jun;Shin, Dongjin;Hwang, Duk-Ju;Ahn, Il-Pyung;Bae, Shin-Chul
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.457-463
    • /
    • 2011
  • Plant specific gene family, NAC (NAM, ATAF, and CUC) transcription factors have been characterized for their roles in plant growth, development, and stress tolerance. In this study, we isolated OsNAC69 gene and analyzed expression level by inoculation of bacterial leaf blight pathogen, Xanthomonas oryzae pv. oryzae (Xoo). NAC transcription factor family can be divided into five groups (I-V). On the basis of phylogenetic analysis, OsNAC69 was fall into group II. OsNAC69 was strongly induced 1 hr after infected with Xoo. To investigate its biological function in the rice, we constructed vector for overexpression in rice, and then generated transgenic rice lines. Gene expression of OsNAC69-overexpressed transgenic rice lines were analyzed by northern blot. Analysis of disease resistance to pathogen Xoo, nine OsNAC69-overexpressed transgenic rice lines showing high expression level of OsNAC69 were shown more resistant than wild type. These results suggest that OsNAC69 gene may play regulatory role during pathogen infection.

Rice NAC proteins act as homodimers and heterodimers

  • Jeong, Jin Seo;Park, Yeong Taek;Jung, Harin;Park, Su-Hyun;Kim, Ju-Kon
    • Plant Biotechnology Reports
    • /
    • v.3 no.2
    • /
    • pp.127-134
    • /
    • 2009
  • Members of the NAM-ATAF-CUC (NAC) protein family are plant-specific transcription factors that contain a highly conserved N-terminal NAC-domain and diverse C-terminal regions. They have been implicated in plant development and abiotic stress responses. To identify interacters of rice NAC-domain proteins (OsNACs), we performed yeast two-hybrid screening of rice cDNA library using OsNAC5 as a bait, and the results showed that OsNAC5 interacts with other OsNACs including itself. To delineate an interacting domain, a series of deletion constructs of four OsNACs were made and transformed into yeast in various combinations. The results revealed that the conserved NAC domain of OsNACs plays a primary role in homodimer and heterodimer formation, and a part of C-terminal sequence is also necessary for the interaction. In vitro pull-down assays using recombinant OsNAC proteins verified the dimer formations, together suggesting that OsNACs may act by forming homodimers and/or heterodimers in plants.

Surgical Techniques to Prevent Nipple-Areola Complex Malposition in Two-Stage Implant-Based Breast Reconstruction

  • Komiya, Takako;Ojima, Yosuke;Ishikawa, Takashi;Matsumura, Hajime
    • Archives of Plastic Surgery
    • /
    • v.49 no.5
    • /
    • pp.580-586
    • /
    • 2022
  • Background Appropriate position of the nipple-areolar complex (NAC) is crucial following nipple-sparing mastectomy (NSM). The prevention of NAC malposition in two-stage implant-based breast reconstruction has not been well described, and the efficacy of the techniques has not been evaluated. This study aimed to evaluate the efficacy of our technique to prevent NAC malposition in patients who underwent implant-based breast reconstruction after NSM. Methods Patients who underwent two-stage implant-based breast reconstruction with NSM between January 2012 and December 2019 were included. We used a surgical technique to fix the NAC to the rigid base, assuming a pocket-like appearance, with pectoralis major muscle and lateral adipofascial flap at the time of tissue expander (TE) insertion. Patients were classified into two groups based on the performance of the technique for the prevention of NAC malposition. Results In 35 patients who underwent implant-based breast reconstruction after NSM, the clavicle-to-nipple distance ratio was 96.0±5.0% in those who underwent NAC fixation and 86.1±11.5% in those who did not undergo NAC fixation. Conclusions Using our technique, NAC malposition could be prevented in two-stage implant-based breast reconstruction. NAC fixation during TE insertion was found to be extremely effective. This procedure successfully prevented NAC malposition without the formation of extra scars.