• 제목/요약/키워드: N4 receptor

검색결과 536건 처리시간 0.027초

Characterization of the N-glycosylation of Recombinant IL-4 and IL-13 Proteins Using LC-MS/MS Analysis and the I-GPA Platform

  • Lee, Ju Yeon;Choi, Jin-woong;Bae, Sanghyeon;Hwang, Heeyoun;Yoo, Jong Shin;Lee, Joo Eon;Kim, Eunji;Jeon, Young Ho;Kim, Jin Young
    • Mass Spectrometry Letters
    • /
    • 제12권3호
    • /
    • pp.66-75
    • /
    • 2021
  • Interleukin-4 (IL-4) and IL-13 are cytokines secreted by immune cells. Cytokines induce the proliferation of macrophages or promote the differentiation of secretory cells. The initiation and progression of allergic inflammatory diseases, such as asthma, are dependent on cytokines acting through related receptor complexes. IL-4 and IL-13 are N-glycoproteins. Glycan structures in glycoproteins play important roles in protein folding, protein stability, enzymatic function, inflammation, and cancer development. Therefore, the glycan structure of IL-4 and IL-13 needs to be elucidated in detail for the development of effective therapies. We report the first attempt to characterize the site-specific N-glycosylation of recombinant IL-4 and IL-13 via liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The tandem mass spectra of intact N-glycopeptides were identified using the Integrated GlycoProteome Analyzer (I-GPA) platform, which can automatically and rapidly analyze multiple N-glycopeptides, including their glycan composition and amino acid sequences. The recombinant IL-4 and IL-13 were identified with amino acid sequence coverages of 84% and 96%, respectively. For IL-4, 52 glycoforms on one N-glycosylation site were identified and quantified. In IL-13, 232 N-glycopeptides from three N-glycosylation sites were characterized, with the site Asn52 being the most extensively glycosylated (~80%). The complex glycans were the most abundant glycan on IL-4 and IL-13 (~96% and 91%, respectively), and the biantennary glycans were the most abundant in both recombinant IL-4 and IL-13 proteins.

Distribution of AMPA Glutamate Receptor GluR1 Subunit-immunoreactive Neurons and their Co-Localization with Calcium-binding Proteins and GABA in the Mouse Visual Cortex

  • Kim, Tae-Jin;Ye, Eun-Ah;Jeon, Chang-Jin
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.34-41
    • /
    • 2006
  • The neuronal localization of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor (GluR) subunits is vital as they play key roles in the regulation of calcium permeability. We have examined the distribution of the calcium permeable AMPA glutamate receptor subunit GluR1 in the mouse visual cortex immunocytochemically. We compared this distribution to that of the calcium-binding proteins calbindin D28K, calretinin, and parvalbumin, and of GABA. The highest density of GluR1-immunoreactive (IR) neurons was found in layers II/III. Enucleation appeared to have no effect on the distribution of GluR1-IR neurons. The labeled neurons varied in morphology; the majority were round or oval and no pyramidal cells were labeled by the antibody. Two-color immunofluorescence revealed that 26.27%, 10.65%, and 40.31% of the GluR1-IR cells also contained, respectively, calbindin D28K, calretinin, and parvalbumin. 20.74% of the GluR1-IR neurons also expressed GABA. These results indicate that many neurons that express calcium-permeable GluR1 also express calcium binding proteins. They also demonstrate that one fifth of the GluR1-IR neurons in the mouse visual cortex are GABAergic interneurons.

Transient activation of the MAP kinase signaling pathway by the forward signaling of EphA4 in PC12 cells

  • Shin, Jong-Dae;Gu, Chang-Kyu;Kim, Ji-Eun;Park, Soo-Chul
    • BMB Reports
    • /
    • 제41권6호
    • /
    • pp.479-484
    • /
    • 2008
  • In the present study, we demonstrate that ephrin-A5 is able to induce a transient increase of MAP kinase activity in PC12 cells. However, the effects of ephrin-A5 on the MAP kinase signaling pathway are about three-fold less than that of EGF. In addition, we demonstrate that EphA4 is the only Eph member expressed in PC12 cells, and that tyrosine phosphorylation induced by ephrin-A5 treatment is consistent with the magnitude and longevity of MAP kinase activation. Experiments using the Ras dominant negative mutant N17Ras reveal that Ras plays a pivotal role in ephrin-A5-induced MAP kinase activation in PC12 cells. Importantly, we found that the EphA4 receptor is rapidly internalized by endocytosis upon engagement of ephrin-A5, leading to a subsequent reduction in the MAP kinase activation. Together, these data suggest a novel regulatory mechanism of differential Ras-MAP kinase signaling kineticsexhibited by the forward signaling of EphA4 in PC12 cells.

흰쥐 해마에서 Acetylcholine 유리에 관여하는 Adenosine Receptor의 Post-Receptor 기전에 관한 연구 (A Study on the Post-Receptor Mechanism of Adenosine Receptor on Acetylcholine Release in the Rat Hippocampus)

  • 최봉규;오재희
    • 대한약리학회지
    • /
    • 제30권3호
    • /
    • pp.263-272
    • /
    • 1994
  • 흰쥐 해마(hippocampus)에서 acetylcholine (ACh) 유리에 미치는 $A_{1}-adenosine$ 수용체의 post-receptor 기전에 관한 지견을 얻고자 하여 $^3H-choline$으로 평형시킨 해마 slice를 사용하여 $^3H-ACh$ 유리에 미치는 여러가지 약물들의 영향을 관찰하였다. Adenosine $(0.3{\sim}300\;{\mu}M)$은 전기자극(3Hz, 2 ms, 5 $VCm^{-1}$, 구형파)에 의한 ACh 유리를 용량 의존적으로 감소 시켰으며, 이러한 효과는 $A_1-adenosine$ 수용체의 선택적 차단제인 8-cyclopentyl-1, 3-dipropylxanthine $(2\;{\mu}M)$에 의해 차단됨을 볼 수 있었다. G-단백 억제제인 N-ethylmaleimide (NEM, 10과 $30\;{\mu}M$)는 그 자체에 의하여 자극유발성 ACh 유리를 증가시켰으며, adenosine의 효과는 NEM 전처리에 의하여 완전히 소실되었다. Protein kinase C 활성화제인 $4{\beta}-phorbol$ 12, 13-dibutyrate (PDB, $1{\sim}10\;{\mu}M$)는 ACh 유리 증가를 일으켰으며 억제제인 polymyxin B (PMB, $0.03{\sim}1\;mg$)는 감소를 일으켰으나, adenosine에 의한 ACh 유리 감소효과는 PDB 및 PMB에 의해 영향을 받지 않았다. $Ca^{++}$-통로 차단제인 nifedipine $(1\;{\mu}M)$은 adenosine의 효과를 길항함을 볼 수 있었으나 $K{^+}$-통로 차단제인 glibenclamide는 adenosine의 효과에 영향을 미치지 못하였다. 8-Bromo-cAMP (100과 $300{\mu}M$) 그 자체로는 ACh 유리에 별다른 영향을 미치치 못하였으나 $300\;{\mu}M$ 8-bromo-cAMP 전처리에 의하여 $30\;{\mu}M\;adenosine$의 효과가 억제됨을 볼 수 있었다. 이상의 실험결과로 흰쥐 해마에서 $A_1-adenosine$ 수용체를 통한 adenosine의 ACh유리 감소는 G-단백에 의존적이며, 이러한 효과에 nifedipine에 예민한 $Ca^{++}$-통로와 adenylate cyclase계가 일부 관여함은 확실하나 proteinkinase C 및 glibenclamide에 예민한 $K{^+}$통로는 관여하지 않는 것으로 사료된다.

  • PDF

Ligand and Dimerization Dependent Transactivation Capability of Aromatic Hydrocarbon Receptor

  • Park, Hyun-Sung
    • BMB Reports
    • /
    • 제32권3호
    • /
    • pp.279-287
    • /
    • 1999
  • The aromatic hydrocarbon receptor (AhR) is a cytosolic protein that binds the environmental pollutant, dioxin. The liganded AhR translocates into the nucleus where it heterimerizes with a constitutive nuclear protein, AhR nuclear translocator (Arnt). The N-terminal regions of both AhR and Arnt contain basic helix-loop-helix (bHLH) and Per-AhR-Arnt-Sim (PAS) motifs that are required for DNA binding, dimerization, and ligand binding whereas the C-terminal regions of both AhR and Arnt contain transactivation domains. Here, results from the mammalian two-hybrid system indicate that Arnt can make a homodimer but AhR cannot. In the presence of dioxin, the interaction between AhR and Arnt is stronger than that of the Arnt homodimer, suggesting that Arnt prefers to make a heterodimer with the liganded AhR rather than a homodimer. Transfection analyses using the GAL4-driven reporter system suggest that AhR's N-terminal region represses its own transactivation domain, as well as exogenous transactivation domains such as Sp 1 and VP16. Interestingly, the repressed transactivation domains of AhR are activated by ligand-dependent heterodimerization with Arnt. These observations suggest that heterodimerzation with Arnt is necessary not only for DNA binding but also for activation of the repressed transactivation capability of AhR.

  • PDF

N-methyl-D-aspartate 수용체 길항제가 몰핀 신체의존성 및 진통내성에 미치는 영향 (Comparison of the Effects of MK-801 and Dextromethorphan on Opioid Physical Dependence and Analgesic Tolerance)

  • 이선희;신대섭;유영아;김대병;이종권;김부영
    • Toxicological Research
    • /
    • 제11권1호
    • /
    • pp.63-68
    • /
    • 1995
  • N-methyl-D-aspartate(NMDA) receptor has been well known as an important mediator of several forms of neural and behavioral plasticity. But different results were reported about the effect of MK-801 or dextromethorphan on opioid dependence. The present studies examined whether NMDA receptor antagonists can alter the opioid dependence and tolerance in rodents. Naloxone precipitated withdrawal symptoms and changes of locomotor activities were observed in MK-801 or dextromethorphan pretreated morphine-dependent rats. Tail-flick assay was used for morphine analgesia and tolerance was found after 4 day's consecutive injections (10 mg/kg, s.c., twice/day) of morphine in mice. Locomotor activity was increased and the withdrawal symptoms were decreased by the pretreatment of MK-801 in morphine-dependent rats. But 0.3 mg/kg i.p. of MK-801 intensified the body weight loss and produced severe ataxia and rotation although some withdrawal signs were attenuated. Morphine induced analgesic tolerance was inhibited by the pretreatment of MK-801 and dextromethorphan. Dextromethorphan was more potent than MK-801 in inhibiting the development of the analgesic tolerance in mice. These results suggest that NMDA system may be involved in opioid withdrawal and analgesic tolerance but appropriate caution should be requested when MK-801 is used in combination with opioid because of untoward neurologic signs.

  • PDF

Assicuation between Genetic Variation of the Insulin Receptor Gene and Essential Hypertension in the Korean Population

  • Kang, Byung-Yong;Kim, Ki-Tae;Eo, Hyun-Seon;Lee, Kyung-Ho;Hong, Sung-Soo;Shin, Jung-Hee;Lee, Chung-Choo
    • Animal cells and systems
    • /
    • 제4권1호
    • /
    • pp.87-90
    • /
    • 2000
  • Essential hypertension is a multifactorial disease, and has been shown to be associated with insulin resistance. The relationship between the genetic variation of the insulin receptor (INSR) gene and essential hypertension In Korean population was investigated by the Nsi 1 restriction fragment length polymorphism (RFLP) pattern of this gene. The observed genotype frequencies of INSR gene were not deviated from those expected for the Hardy-Weinberg equilibrium (HWE), but a significant association was observed between essential hypertension and N1 allele of Nsi 1 RFLP at the INSR gene ($X^2$-test; P<0.05). Moreover, the frequency of N1 allele was significantly different between normotensives and essential hypertensives in subgroups that were not obese ($X^2$-test; P<0.05). These data suggest that the Nsil RFLP of INSR gene may be a useful genetic marker for essential hypertension in Korean population.

  • PDF

Effect of $K^+-channel$ Blockers on the Muscarinic- and $A_1-adenosine-Receptor$ Coupled Regulation of Electrically Evoked Acetylcholine Release in the Rat Hippocampus

  • Yu, Byung-Sik;Kim, Do-Kyung;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권2호
    • /
    • pp.147-154
    • /
    • 1998
  • It was attempted to clarify the participation of $K^+-channels$ in the post-receptor mechanisms of the muscarinic and $A_1-adenosine$ receptor- mediated control of acetylcholine (ACh) release in the present study. Slices from the rat hippocampus were equilibrated with $[^3H]$choline and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 V/cm, 2 ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Oxotremorine (Oxo, $0.1{\sim}10\;{\mu}M$), a muscarinic agonist, and $N^6-cyclopentyladenosine$ (CPA, $1{\sim}30\;{\mu}M$), a specific $A_1-adenosine$ agonist, decreased the ACh release in a dose-dependent manner, without affecting the basal rate of release. 4-aminopyridine (4AP), a specific A-type $K^+-channel$ blocker ($1{\sim}100\;{\mu}M$), increased the evoked ACh release in a dose-related fashion, and the basal rate of release is increased by 3 and $100\;{\mu}M$. Tetraethylammonium (TEA), a non-specific $K^+-channel$ blocker ($0.1{\sim}10\;{\mu}M$), increased the evoked ACh release in a dose-dependent manner without affecting the basal release. The effects of Oxo and CPA were not affected by $3\;{\mu}M$ 4AP co-treatment, but 10 mM TEA significantly inhibited the effects of Oxo and CPA. 4AP ($10\;{\mu}M$)- and TEA (10 mM)-induced increments of evoked ACh release were completely abolished in Ca^{2+}-free$ medium, but these were recoverd in low Ca^{2+}$ medium. And the effects of $K^+-channel$ blockers in low Ca^{2+}$ medium were inhibited by $Mg^{2+}$ (4 mM) and abolished by $0.3\;{\mu}M$ tetrodotoxin (TTX). These results suggest that the changes in TEA-sensitive potassium channel permeability and the consequent limitation of Ca^{2+}$ influx are partly involved in the presynaptic modulation of the evoked ACh-release by muscarinic and $A_1-adenosine$ receptors of the rat hippocampus.

  • PDF

Bisphenol과 Octylphenol이 TM3 세포에 미치는 영향: Cytochrome P450scc와 Estrogen Receptor $\alpha$ 유전자의 발현 (Effects of Bisphenol and Octylphenol on TM3 Cell : Expression of Cytochrome P450scc and Estrogen Receptor $\alpha$ mRNA)

  • 이호준;김묘경;강희규;김동훈;한성원;고덕성
    • 한국발생생물학회지:발생과생식
    • /
    • 제4권2호
    • /
    • pp.215-220
    • /
    • 2000
  • 대부분의 내분비교란물질들은 에스트로겐이나 항에스트로겐적인 활성을 가지고 있어 사람이나 생태계에 있어서 생식기능 발달을 저해하는 것으로 보고되고 있다. 본 연구는 estrogen (E$_2$)과 bisphenol (BP) 그리고 octylphenol (OP)이 생쥐 Leydig cell line인 TM3 세포에 미치는 영향을 알아보고자 하였다. TM3 세포는 11 ~13일령의 BALB/c nu/+ 생쥐로부터 유래한 정소내 세포인 Leydig cell로 DMEM에 FBS (10%)가 첨가된 배양액에 E$_2$, BP와 OP를 농도별 (1 pM, 1 nM, 1 $\mu$M, 1 mM)로 처리하고 48시간동안 체외에서 배양하였다. 배양 후, 전체 세포수와 생존율을 혈구세포판과 trypan blue 염색 방법으로 조사하였고, 스테로이드호르몬 합성에 관여하는 cytochrome P450scc (CYPscc)와 estrogen receptor $\alpha$ (ER $\alpha$) 유전자의 발현은 역전사 중합효소 연쇄 반응으로 관찰하였다. 결과를 살펴보면 TM3 세포의 생존율에 있어서는 1 $\mu$M 이하에서는 차이 가 없었으며 1 mM 첨가군에서는 유의하게 감소함을 보였다. 세포수에 있어서는 OP 처리군에서만 유의하게 적게 나타났다. CYPscc 유전자의 발현은 E$_2$ 군을 제외하고 BP (1 nM, 1 $\mu$M) 첨가군에서 약간 감소가, OP (1 nM, 1 $\mu$M) 첨가군에서는 유의한 감소가 나타났다. 그러나ER $\alpha$ 유전자의 발현은 처리군 모두에서 대조군보다 높은 발현율을 나타내었다. 결론적으로 고농도의 BP와 OP는 CYPscc유전자의 발현을 감소시킴으로써 스테로이드합성 과정을 억제시켜 정소기능에 장애를 일으키며, 정자형성 과정에도 영향을 미칠 수 있을 것으로 사료된다.

  • PDF