• Title/Summary/Keyword: N3 system

Search Result 6,392, Processing Time 0.048 seconds

A Seasonal Variation of Acidic Gases and Fine Particle Species in Chongju Area (청주지역 산성 가스상물질과 미세입자의 계절 변동 특성)

  • 강병욱;이학성;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.5
    • /
    • pp.333-343
    • /
    • 1997
  • The cyclone/annular denuder system/filter pack sampling system (ADS) was used to collect the acidic air pollutants in Chongju city. The data set was collected on fifty -eight different days with 24 hour sampling period from October 27, 1995 through August 25, 1996. The chemical species measured were HN $O_3$, HN $O_2$, S $O_2$ and N $H_3$ in the gas phase, and PM2.5( $d_{p}$ <2.5 ${\mu}{\textrm}{m}$), S $O_4$$^{2-}$, N $O_3$$^{[-10]}$ and N $H_4$$^{+}$ in the Particulate Phase. Mean concentrations measured for this study were: 0.45 $\mu\textrm{g}$/㎥ for HN $O_3$, 3.39 $\mu\textrm{g}$/㎥ for HN $O_2$, 26.4 $\mu\textrm{g}$/㎥ for S $O_2$, 3.83$\mu\textrm{g}$/㎥ for N $H_3$, 44.2 $\mu\textrm{g}$/㎥ for P $M_{2.5}$, 8.22 $\mu\textrm{g}$/㎥ for S $O_4$$^{2-}$, 3.63 $\mu\textrm{g}$/㎥ for N $O_3$$^{[-10]}$ , and 2.84 $\mu\textrm{g}$/㎥ for N $H_4$$^{- }$. HN $O_3$ and N $H_3$ were higher during the summer. However, HN $O_2$ and S $O_2$ were higher during the fall and winter. P $M_{2.5}$ , S $O_4$/ sup 2-/ and N $H_4$$^{+}$ were not showed seasonal variations, but N $O_3$$^{[-10]}$ was higher in the winter.ter.r.

  • PDF

A Study on the Crystallization of Grain-Boundary Phases in Si3N4-Y2O3-Al2O3 System (Si3N4-Y2O3-Al2O3계의 입계상 결정화에 관한 연구)

  • 박정현;황종희
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.13-20
    • /
    • 1989
  • After sintering Si3N4 containing 20wt% of variable composition ratio of Y2O3 and Al2O3 at 1$600^{\circ}C$, the specimens were annealed at 125$0^{\circ}C$ and 135$0^{\circ}C$ for 5, 10, 15 hours in order to crystallize the remanining oxynitride glass phases. The main grain-boundary crystalline phases in the Si3N4-Y2O3-Al2O3 system were melilite and YAG. By annealing 15hrs. at 125$0^{\circ}C$, almost all of the glasses were crystallized. During the growth of melilite, lattice volyume of $\beta$-Si3N4 was increased as Al3+ and O2- ions in the oxynitride glass diffuse into $\beta$-Si3N4 lattice, but during the growth of YAG, lattice volume of $\beta$-Si3N4 was decreased by reverse diffusion of Al3+ and O2- ions. In case of crystallization of glass phase to melilite, thermal expansion of sample was decreased, but in case of crystallization to YAG, inverse phenomen on was observed.

  • PDF

Effects of Amorphous Si3N4 Phase on the Mechanical Properties of Ti-Al-Si-N Nanocomposite Films Prepared by a Hybrid Deposition System (하이브리드 증착 시스템에 의해 합성된 나노복합체 Ti-Al-Si-N 박막 내 존재하는 Si3N4 비정질상이 기계적 특성에 미치는 영향)

  • An, Eun-Sol;Jang, Jae-Ho;Park, In-Uk;Jeong, U-Chang;Kim, Gwang-Ho;Park, Yong-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.304-304
    • /
    • 2014
  • Quaternary Ti-Al-Si-N films were deposited on WC-Co substrates by a hybrid deposition system of arc ion plating (AIP) method for Ti-Al source and DC magnetron sputtering technique for Si incorporation. The synthesized Ti-Al-Si-N films were revealed to be composites of solid-solution (Ti,Al)N crystallites and amorphous $Si_3N_4$ by instrumental analyses. The Si addition in Ti-Al-N films affected the refinement and uniform distribution of crystallites by percolation phenomenon of amorphous silicon nitride, similarly to Si effect in TiN film. As the Si content increased up to about 9 at.%, the hardness of Ti-Al-N film steeply increased from 30 GPa to about 50 GPa. The highest microhardness value (~50 GPa) was obtained from the Ti-Al-Si-N film having the Si content of 9 at.%, the microstructure of which was characterized by a nanocomposite of $nc-(Ti,Al)N/a-Si_3N_4$.

  • PDF

Data Build-up for the Construction of Korean Specific Greenhouse Gas Emission Inventory in Livestock Categories

  • Won, S.G.;Cho, W.S.;Lee, J.E.;Park, K.H.;Ra, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • Many studies on methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from livestock industries have revealed that livestock production directly contributes to greenhouse gas (GHG) emissions through enteric fermentation and manure management, which causes negative impacts on animal environment sustainability. In the present study, three essential values for GHG emission were measured; i.e., i) maximum $CH_4$ producing capacity at mesophilic temperature ($37^{\circ}C$) from anaerobically stored manure in livestock category ($B_{0,KM}$, Korean livestock manure for $B_0$), ii) $EF_{3(s)}$ value representing an emission factor for direct $N_2O$ emissions from manure management system S in the country, kg $N_2O-N$ kg $N^{-1}$, at mesophilic ($37^{\circ}C$) and thermophilic ($55^{\circ}C$) temperatures, and iii) $N_{ex(T)}$ emissions showing annual N excretion for livestock category T, kg N $animal^{-1}$ $yr^{-1}$, from different livestock manure. Static incubation with and without aeration was performed to obtain the $N_2O$ and $CH_4$ emissions from each sample, respectively. Chemical compositions of pre- and post- incubated manure were analyzed. Contents of total solids (% TS) and volatile solid (% VS), and the ratio of carbon to nitrogen (C/N) decrease significantly in all the samples by C-containing biogas generation, whereas moisture content (%) and pH increased after incubation. A big difference of total nitrogen content was not observed in pre- and post-incubation during $CH_4$ and $N_2O$ emissions. $CH_4$ emissions (g $CH_4$ kg VS-1) from all the three manures (sows, layers and Korean cattle) were different and high C/N ratio resulted in high $CH_4$ emission. Similarly, $N_2O$ emission was found to be affected by % VS, pH, and temperature. The $B_{0,KM}$ values for sows, layers, and Korean cattle obtained at $37^{\circ}C$ are 0.0579, 0.0006, and 0.0828 $m^3$ $CH_4$ kg $VS^{-1}$, respectively, which are much less than the default values in IPCC guideline (GL) except the value from Korean cattle. For sows and Korean cattle, $N_{ex(T)}$ values of 7.67 and 28.19 kg N $yr^{-1}$, respectively, are 2.5 fold less than those values in IPCC GL as well. However, $N_{ex(T)}$ value of layers 0.63 kg N $yr^{-1}$ is very similar to the default value of 0.6 kg N $yr^{-1}$ in IPCC GLs for National greenhouse gas inventories for countries such as South Korea/Asia. The $EF_{3(s)}$ value obtained at $37^{\circ}C$ and $55^{\circ}C$ were found to be far less than the default value.

Inorganic Nutrient Removal Efficiency of Aquatic Plants from Recirculating Aquaculture System (수생식물을 이용한 담수 순환여과식 양식용수내의 무기영양염 처리 효율)

  • 마진석;오승용;조재윤
    • Journal of Aquaculture
    • /
    • v.16 no.3
    • /
    • pp.171-178
    • /
    • 2003
  • Inorganic nutrients such as nitrogen and phosphate compounds accumulate in recirculating aquaculture systems. These nutrients must be removed from the system before they affect pH and fish health. For this purpose, aquatic plants are a simple and inexpensive method of removal. There are four commonly used aquatic plants: Eichhornia crassipes (water hyacinth), Pistia stratiotes (water lettuce), Hygrophila angustifolia, and Hydrocotyle leucocephala in freshwater recirculating aquaculture systems in Korea, but their efficiencies are not known. Therefore, removal efficiencies of inorganic nutrients from a freshwater recirculating aquaculture water with four commonly used aquatic plants were tested. Removing efficiencies of TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N of the plants in 210 L aquaria for 48-hour period were tested. The removing efficiencies of TAN, N $O_3$$^{[-10]}$ -N, and P $O_4$$^{3-}$-P of the two most effective plants, water hyacinth and water lettuce, were also tested in 690 L (surface area of 1.55 $m^2$) tanks under 2 different initial stocking densities, 4 kg and 6 kg, for 22 days. Proximate analysis major nutrients and N and P contents of the all plants were analyzed for calculating net removal weight of N and P by the plants. Water lettuce was the most effective for removing TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N from the water for 48-hour period tested followed by water hyacinth and Hygrophila angustifolia. Water lettuce reduced TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N concentration from 2.3 mg/L, 0.197 mg/L, and 21.4 mg/L to 0.4 mg/L, 0.024 mg/L and 17.4 mg/L, respectively while water hyacinth reduced them down to 0.6 mg/L, 0.029 mg/L and 17.9 mg/L, respectively. The concentrations of TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N in Hydrocotyle leucocephala group were rather increased up to 3.7 mg/L, 5.7 mg/L and 48.2 mg/L, respectively. This is because the creeping stem of Hydrocotyle leucocephala had to be cut to meet stocking weight resulting in decaying of the stem in the aquaria during experiment. The net growth in weight of water hycinth and water lettuce of 4 kg each in the 1.55 $m^2$ tanks for 22 days were 9.768 kg and 10.803 kg respectively, and those at initial weight of 6 kg each were 8.393 kg and 9.433 kg, respectively. The reason of lower net growth in the later group was restricted growth space. Nitrogen and phosphorus contents in water hyacinth were 2.89% and 0.27%, and those in water lettuce were 3.87% and 0.36%, respectively. Average quantities of removed N and P from 1.55 $m^2$ tanks by water hyacinth for 22 days were 18.9 g and 1.75 g, while those by water lettuce were 36.8 g and 3.5 g, respectively. Therefore water lettuce showed much higher efficiencies for removing both N and P from recirculating aquaculture water than water hyacinth.

Removal of COD and T-N caused by ETA from Nuclear Power Plant Wastewater using 3D Packed Bed Bipolar Electrode System (3D 복극충진전기분해를 이용한 원전 ETA에 의해 유발된 폐수 내 COD 및 T-N 제거)

  • Kim, Han-Ki;Jeong, Joo-Young;Shin, Ja-Won;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.409-421
    • /
    • 2012
  • Ethanolamine (ETA) is mainly used to prevent corrosion of pipe in secondary cooling system of nuclear power plant. Condensed ETA in wastewater could increase COD and T-N when it was emitted to natural water system. Compared to conventional treatments, electrochemical oxidation process using packed bed bipolar electrodes was adopted to treat COD and T-N. According to arrangement of feeder electrode, single packed bed bipolar electrode reactor and multi-paired packed bed bipolar reactor were developed and conventional zero-valent iron (ZVI) was selected as conducting bipolar electrode. Bipolar electrodes were coordinated three-dimensionally in the reactor. The experimental results showed that COD and T-N was little removed in unit system at different pH condition (pH 8 and 11) on 100V. However, in multi-paired system that applied 600V, COD was eliminated 80.85% (anode-cathode-anode, A-C-A) and 85.11% (cathode-anode-cathode, C-A-C), respectively. T-N was also removed 96.88% (A-C-A) and 90.63% (C-A-C), simultaneously. Current efficiency was estimated both single and multi-paired system. At unit bipolar packed bed reactor, current efficiency was almost zero, however in multi-paired system, current efficiency was 300~500% at A-C-A and 250~350% at C-A-C. Current efficiency was over 100% hence it was confirmed that this system is more effective than conventional electrochemical oxidation system.

Geology and Mineral Resources of the Okchǒn Zone-The Boundary between the Okchǒn and Chosǒn Systems in the South of Jechǒn, and the Geology in its Vicinity- (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -제천남부(堤川南部)의 옥천계(沃川系)의 조선계(朝鮮系)의 경계(境界) 및 부근(附近)의 지질(地質)-)

  • Kim, Ok Joon;Min, Kyung Duck;Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.3
    • /
    • pp.225-230
    • /
    • 1986
  • Various interpretations on the boundary between the $Okch{\check{o}}n$ system and the Great Limestone series of the $Chos{\check{o}}n$ system, and on the geologic structure and stratigraphy of the $Okch{\check{o}}n$ system have been yielded by the previous studies, and they are still in hot debate. The present work has mainly studied on the boundary between the $Okch{\check{o}}n$ and $Chos{\check{o}}n$ systems in the south of $Jech{\check{o}}n$, and the geology in its vicinity to clarify the previous misinterpretations if any on the geologic structure and in trun stratigraphy of the area concerned. The boundary between the $Okch{\check{o}}n$ system and the Great Limestone series of the $Chos{\check{o}}n$ system has been thought to be (1) gradational relation which means two systems are the same formation, (2) unconformable relation in which the $Okch{\check{o}}n$ system overlies the $Chos{\check{o}}n$ system, (3) unconformable relation in which the $Chos{\check{o}}n$ system overlies the Okchon system indicating that the age of the $Okch{\check{o}}n$ system is Precambrian, and (4) fault contact in which the $Okch{\check{o}}n$ system of Precambrian age comes in contact with the $Chos{\check{o}}n$ system of Cambro-Ordovician age. The present study clearly found that the relationship between the two systems is a fault zone contact. Shear zone of a width of 300 to 400m is developed, and andesitic volcanics and basic dikes are intruded along the fault zone. This fault contact is exactly the north extension of the Bonghwajae fault, which was denominated long time ago by two of the present authors. The eastern side of the fault has been uplifted so that the $S{\check{o}}changri$ formation of the $Okch{\check{o}}n$ system cropped out in the zone of the Great Limestone series. All the previous workers thought that the $S{\check{o}}changri$ formation rests on the Great Limestone series, but the present study found an overthrust having a strike of $N8^{\circ}E$ and dip of $30^{\circ}NW$ between them, and the $S{\check{o}}changri$ formation has thrusted over the Great Limestone series at the central part of the study area. In the southern and northern parts of this uplifted $S{\check{o}}changri$ formation, the Great Limestone series rests unconformably on it. In the eastern part of the study area where the Mt. Dangdu is located and the previous workers thought that the $S{\check{o}}changri$ formation rests on the Great Limestone series, Precambrian basement rock whose age is older than 1720+50 m.y. crops out in the northern part of the east-west trending high angle fault, and the Great Limestone series rests unconformably on the basement.

  • PDF

Life cycle assessment (LCA) of roof-waterproofing systems for reinforced concrete building

  • Ji, Sukwon;Kyung, Daeseung;Lee, Woojin
    • Advances in environmental research
    • /
    • v.3 no.4
    • /
    • pp.367-377
    • /
    • 2014
  • In this study, we investigated a life cycle assessment (LCA) of six roof-waterproofing systems [asphalt (C1), synthetic polymer-based sheet (C2), improved asphalt (C3), liquid applied membrane (C4), Metal sheet with asphalt sheet (N1), and liquid applied membrane with asphalt sheet (N2)]for reinforced concrete building using an architectural model. To acquire accurate and realistic LCA results, minimum units of material compositions for life cycle inventory and real data for compositions of waterproofing materials were used. Considering only materials and energy demands for waterproofing systems per square meter, higher greenhouse gas (GHG) emissions could be generated in the order of C1 > N2 > C4 > N1 > C2 > C3 during construction phase. However, the order was changed to C1 > C4 > C3 > N2 > N1 > C2, when the actual architecture model was applied to the roof based on each specifications. When an entire life cycle including construction, maintenance, and deconstruction were considered, the amount of GHG emission was in the order of C4 > C1 > C3 > N2 > C2 > N1. Consequently, N1 was the most environmental-friendly waterproofing system producing the lowest GHG emission. GHG emissions from maintenance phase accounted for 71.4%~78.3% among whole life cycle.

Application of Hybrid SNCR/SCR process for Improved N Ox Removals Efficiency of SNCR (SNCR의 N Ox 제거효율 향상을 위한 Hybrid SNCR/SCR 공정 응용)

  • 최상기;최성우
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.997-1004
    • /
    • 2003
  • The objective of this research was to test whether, under controlled laboratory conditions, hybrid SNCR/SCR process improves N $O_{x}$ removal efficiency in comparison with the SNCR only. The hybrid process is a combination of a redesigned existing SNCR with a new downstream SCR. N $O_{x}$ reduction experiments using a hybrid SNCR/SCR process have been conducted in simple NO/N $H_3$/ $O_2$ gas mixtures. Total gas flow rate was kept constant 4 liter/min throughout the SNCR and SCR reactors, where initial N $O_{x}$ concentration was 500 ppm in the presence of 5% or 15% $O_2$. Commercial catalysts, $V_2$ $O_{5}$ -W $O_3$-S $O_4$/Ti $O_2$, were used for SCR N $O_{x}$ reduction. The residence time and space velocity were around 1.67 seconds and 2,400 $h^{-1}$ or 6000 $h^{-1}$ in SNCR and SCR reactors, respectively. N $O_{x}$ reduction of the hybrid system was always higher than could be achieved by SNCR alone at a given value of N $H_{3SLIP}$. Optimization of the hybrid system performance requires maximizing N $O_{x}$ removal in the SNCR process. An analysis based on the hybrid system performance in this lab-scale work indicates that a equipment with N $O_{xi}$ =500 ppm will achieve a total N $O_{x}$ removal of about 90 percent with N $H_{3SLIP}$ $\leq$ 5 ppm only if the SNCR N $O_{x}$ reduction is at least 60 percent. A hybrid SNCR/SCR process has shown about 26∼37% more N $O_{x}$ reduction than a SNCR unit process in which a lower temperature of 85$0^{\circ}C$ turned out to be more effective.be more effective.

고효율 자외선/광촉매 시스템을 이용한 고농도 유기성 폐수처리

  • Jeong, Hyo-Gi;Kim, Jung-Gon;Kim, Si-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.272-276
    • /
    • 2005
  • Food wastewater derived from three-stages methane fermentation system showed high concentrations of sCOD, T-N and $NH_{3}-N$. To treat the organic wastewater, the optimal operating conditions for high efficiency $UV/TiO_{2}$ photocotalytic system have been investigated. In the first process, wastewater was pre-treated with $FeCl_{3}. The optimum pH and concentration for coagulation were 4.0 and 2000 mg/L, respectively. Through this process, 52.6% of $COD_{cr}$ was removed. The second process was $UV/TiO_{2}$ photocatalytic reaction. The optimum conditions for the operation of $UV/TiO_{2}$ photocatalytic system developed in this lab have been studied. In this process, CODcr was removed from 2890 to 184 mg/L and T-N was removed from 2496 to 914 for 24 hours, respectively.

  • PDF