• Title/Summary/Keyword: N1 rpm

Search Result 273, Processing Time 0.025 seconds

Study on Friction Welding of Copper to Aluminium for Developing Electrical Sleeve (전력용 슬리브 개발을 위한 동과 알루미늄의 마찰용접에 관한 연구)

  • 오세규;최진호;장지훈;오명석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.100-106
    • /
    • 1993
  • A study on optimizing the friction welding of copper(C1100) to aluminium(A1050) for developing the electrical sleeve was experimentally carried out and also on real-time nondestructive evaluation of the friction weld quality (strength) was accomplished by acoustic emission technique. The results obtained are summarized as the following ; 1) The heating upset $U_1$(mm) or total upset U(mm) tends to increase according to the increase of heating time $t_1$(sec). The relations between $U_1$ and $t_1$ or U and $t_1$are computed as follows when n=2000rpm, $P_1$=4, $P_2$=8kgf/$mm^2$, and $t_2$=6sec. U=1.6$e^{0.39t_1}$ $U_1$=3.65$e^{0.25t_1}$. 2) It was notified that the proper welding conditions by considering on both strength with more than 100% joint effieciency and toughness are heating time of 1.5-2.25 sec under n=200rpm, $P_1$=4, $P_2$=8kgf/$mm^2$, $t_2$=6sec. 3) It was confirmed that both AE total counts(N, counts) and the weld tensile strength (${\sigma}$, kgf/$mm^2$) of the welded joints increase as the increase of heating time, respectively, the relations between N and $t_1$, ${\sigma}$ and $t_1$ are computed from data points by regression analysis using the least square method as follows in case of the above proper condition ; N=50108+23917(ln $t_1$)${\sigma}$$=11.85+2.06(ln $t_1$). 4) Both empirical and calcularated equations of relationship between .sigma. and N are very coincident with a high reliability, as the following in case of the above proper welding condition ; Calculated : ${\sigma}$=0.00008N+7.5 Empirical :${\sigma}$= $8.17e^{0.0000072N}$. 5) It was confirmed that the real-time nondestructive weld strength evaluation for friction welding of copper(C1100) to aluminium(A1050) could be possible by acoustic emission technique.

  • PDF

Effects of Aeration Rates and Rheological Properties of Fermentation Broth on Pullulan Fermentation (풀루란 발효시 통기속도의 영향과 발효액의 물성에 관한 연구)

  • Shin, Yong-Chul;Han, Jong-Kwon;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.533-538
    • /
    • 1990
  • In polysaccharide fermentation with Aureobasidium pullulans, the aeration effects on the production of polysaccharide and the rheological properties of fermentation broth were studied. The increase of the aeration rates from 0.5 to 2.0vvm at 500 rpm yielded the maximum specific production rate of polysaccharide from 0.046 to $0.093 (hr^{-1})$, and the maximum specific growth rate of cells from 0.168 to $0.192 (hr^{-1})$. The viscosity behavior of fermentation broths at the different aeration rates followed the power-law ${\tau}= K({\gamma})^n$. The viscosity attributed by cells was about 10% of the total viscosity of fermentation broth and most of viscosity was attributed by the polysaccharide produced. The relationship between power-law parameters and the concentration of polysaccharide generally satisfied the etㄴrations with the regression coefficient greater than 0.980, $lnK(t)= ln({\tau})_o-n(t)\;ln({\gamma})_o\;and\;K(t)=A P(t)^B$.

  • PDF

Cultural Characteristics of Antagonistic Bacterium, Bacillus licheniformis N1 against Botrytis cinerea (잿빛공팜이에 대한 길항균 Bacillus Iicheniformis N1의 배양적 특성)

  • 이재필;문병주
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.173-180
    • /
    • 2001
  • This study was conducted to estimate the cultural characteristics, the production of antibiotic, and the selection of optimal media for mass culture of Bacillus licheniformis N1 isolate which was previously reported as an antagonistic bacterium to Botrytis cinerea. We investigated initial pH, temperatures and shaking speed for good cultural conditions and antibiotics production by N1 isolate. According to the results, the optimal conditions of initial pH, temperatures, and shaking speed were determined to be pH 5.0~5.5, 30~35$^{\circ}C$ and 250 rpm, respectively. Also, the optimal conditions for the antagonism by N1 isolate highly appeared in the initial pH as 5.0, and the mycelial growth inhibition was high when the substances used such as glucose or corn starch as carbon sources, and biji(soybean curd residue) flour as a nitrogen source. Furthermore, inhibitory area was significantly expanded, when 3% or 5% of corn starch was added into 5% of Biji flour as nitrogen source, were respectivley selected for mass culture of N1 isolate. Among them, 5% Biji flour medium showed higher cell density more than 10 times that in NB medium after 48 hour incubation. Therefore, the optimal medium was determined as 5% biji flour added 3~5% of corn starch for high density of cells.

  • PDF

Scaling Up Study of Exopolysaccharide Production through Mycelial Submerged Cultivation of Ganoderma lucidum (영지의 액체배양에 의한 세포외 다당 생산의 Scale Up 연구)

  • Lee, Hak-Su;Lee, Shin-Young
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.303-311
    • /
    • 2009
  • A scaling up study for the exopolysaccharide (EPS) production by submerged culture of Ganoderma lucidum was carried out in jar fermenter systems (2.6, 20 and 75 L) under bi-staged pH process. Profiles of dissolved oxygen (DO) and volumetric coefficient of oxygen transfer ($k_La$) as a function of operating variables (agitation speed and aeration rate) was investigated, and a correlation between $k_La$ and operating variables was analysed statistically. Under bi-staged pH process, no limitation of DO was observed at agitation speeds tested in the range of 200 and 600 rpm, and the highest EPS production was obtained at the level of DO of $40{\sim}80%$. From the regression analysis, the relation between $k_La$, gas velocity (Vs), stirrer speed (N) and impeller diameter (Di) could be expressed as : $$k_La=0.555{\times}Vs^{0.42}{\times}(N^3{\times}Di^2)^{0.33}\;(R^2=0.925,\;p<0.05)$$ It was found that under 2.6 L jar fermenter, the optimum agitation speed and aeration rate was 400 rpm and 1 vvm, respectively, obtaining the EPS production of 15.43 g/L. Under the submerged cultivation of G. lucidum in jar fermenters of $2.6{\sim}75\;L$, the similar EPS yields at each fermenter were achieved during scaling up based on $k_La$, and $k_La$ value for maximum EPS production was $85.4{\pm}26.70\;h^{-1}$.

Thermal Characteristics Analysis of 30,000rpm High Speed Spindle (30,000rpm 고속 주축의 열특성 분석)

  • Lim, Jeong-Suk;Yu, Ki-Han;Chung, Won-Jee;Kim, Soo-Tae;Lee, Jung-Hwan;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.120-126
    • /
    • 2009
  • Thermal displacement of high speed spindle is very important problem to be solved. To solve heat generation and thermal displacement problems that influence on the product accuracy, it is very important to predict thermal characteristics of the spindle and it is positively necessary to select the conditions of cooling, flow rate and preload of bearings. In this paper, 30,000rpm($1.455{\times}10^6DmN$) spindle was designed and produced. The analysis of thermal deformation for heat generation of inner spindle was carried out using commercial program $ANSYS^{(R)}$ and the result was compared with measured data using $LabVIEW^{(R)}$ and SGXI-1600, 1125 and 1126 module. Temperature distribution and thermal displacement according to spindle speed are measured. Using this method, it is possible to predict and to improve thermal characteristic of high speed spindle by control spindle speed, bearing preload and cooling rate.

Integrated Rotary Genetic Analysis Microsystem for Influenza A Virus Detection

  • Jung, Jae Hwan;Park, Byung Hyun;Choi, Seok Jin;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.88-89
    • /
    • 2013
  • A variety of influenza A viruses from animal hosts are continuously prevalent throughout the world which cause human epidemics resulting millions of human infections and enormous industrial and economic damages. Thus, early diagnosis of such pathogen is of paramount importance for biomedical examination and public healthcare screening. To approach this issue, here we propose a fully integrated Rotary genetic analysis system, called Rotary Genetic Analyzer, for on-site detection of influenza A viruses with high speed. The Rotary Genetic Analyzer is made up of four parts including a disposable microchip, a servo motor for precise and high rate spinning of the chip, thermal blocks for temperature control, and a miniaturized optical fluorescence detector as shown Fig. 1. A thermal block made from duralumin is integrated with a film heater at the bottom and a resistance temperature detector (RTD) in the middle. For the efficient performance of RT-PCR, three thermal blocks are placed on the Rotary stage and the temperature of each block is corresponded to the thermal cycling, namely $95^{\circ}C$ (denature), $58^{\circ}C$ (annealing), and $72^{\circ}C$ (extension). Rotary RT-PCR was performed to amplify the target gene which was monitored by an optical fluorescent detector above the extension block. A disposable microdevice (10 cm diameter) consists of a solid-phase extraction based sample pretreatment unit, bead chamber, and 4 ${\mu}L$ of the PCR chamber as shown Fig. 2. The microchip is fabricated using a patterned polycarbonate (PC) sheet with 1 mm thickness and a PC film with 130 ${\mu}m$ thickness, which layers are thermally bonded at $138^{\circ}C$ using acetone vapour. Silicatreated microglass beads with 150~212 ${\mu}L$ diameter are introduced into the sample pretreatment chambers and held in place by weir structure for construction of solid-phase extraction system. Fig. 3 shows strobed images of sequential loading of three samples. Three samples were loaded into the reservoir simultaneously (Fig. 3A), then the influenza A H3N2 viral RNA sample was loaded at 5000 RPM for 10 sec (Fig. 3B). Washing buffer was followed at 5000 RPM for 5 min (Fig. 3C), and angular frequency was decreased to 100 RPM for siphon priming of PCR cocktail to the channel as shown in Figure 3D. Finally the PCR cocktail was loaded to the bead chamber at 2000 RPM for 10 sec, and then RPM was increased up to 5000 RPM for 1 min to obtain the as much as PCR cocktail containing the RNA template (Fig. 3E). In this system, the wastes from RNA samples and washing buffer were transported to the waste chamber, which is fully filled to the chamber with precise optimization. Then, the PCR cocktail was able to transport to the PCR chamber. Fig. 3F shows the final image of the sample pretreatment. PCR cocktail containing RNA template is successfully isolated from waste. To detect the influenza A H3N2 virus, the purified RNA with PCR cocktail in the PCR chamber was amplified by using performed the RNA capture on the proposed microdevice. The fluorescence images were described in Figure 4A at the 0, 40 cycles. The fluorescence signal (40 cycle) was drastically increased confirming the influenza A H3N2 virus. The real-time profiles were successfully obtained using the optical fluorescence detector as shown in Figure 4B. The Rotary PCR and off-chip PCR were compared with same amount of influenza A H3N2 virus. The Ct value of Rotary PCR was smaller than the off-chip PCR without contamination. The whole process of the sample pretreatment and RT-PCR could be accomplished in 30 min on the fully integrated Rotary Genetic Analyzer system. We have demonstrated a fully integrated and portable Rotary Genetic Analyzer for detection of the gene expression of influenza A virus, which has 'Sample-in-answer-out' capability including sample pretreatment, rotary amplification, and optical detection. Target gene amplification was real-time monitored using the integrated Rotary Genetic Analyzer system.

  • PDF

Nb doped strontium titanate single crystal growth by floating zone method (Floating zone법에 의한 Nb를 첨가한 strontium titanate 단결정 성장)

  • Jeon, Byong-Sik;Cho, Hyun;Orr, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.215-222
    • /
    • 1995
  • Nb doped strontium titanate single crystals were grown by the floating zone method. The doping amount of $Nb_2O_5$ was 0.2 wt %. Those crystals were grown in air and N z atmosphere and the growth rate was 5 mmlhr and rotation speed of upper and lower shaft was 30 rpm. The shapes of melt - feed rod interface depending on sintering temperatures were observed. In air atmosphere, the flow rate of air was 1.5 ${\ell}/min$ and in $N_2$ atmosphere, that of $N_2$ gas was 0.5 ${\ell}/min$. As grown crystals were analyseQ by XRD, Laue back - reflection and chemical etching. After annealing in $N_2$ atmosphere, resistivities of crystals were measured and the activation energies of each samples were calculated.

  • PDF

Tribology of Si3N4 Ceramics Depending on Amount of Added SiO2 Nanocolloid (SiO2 나노 콜로이드 첨가량에 따른 질화규소의 트라이볼러지)

  • Nam, Ki-Woo;Chung, Young-Kyu;Hwang, Seok-Hwan;Kim, Jong-Soon;Moon, Chang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.267-272
    • /
    • 2011
  • We analyzed the wear characterization of $Si_3N_4$ ceramics according to the amount of added $SiO_2$ nanocolloid. The test specimen was prepared by hot-press sintering at 35 MPa and 2123 K in an $N_2$ gas atmosphere for 1 h. A wear test was performed with a block-on-ring tester, and the test conditions were as follows: (1) the ring with a diameter of 35 mm had a rotational speed of 50 rpm; (2) the load was 9.8 N; and (3) the temperature was $25^{\circ}C$. The test results show that $Si_3N_4$ ceramics have a friction coefficient of about 1.0 and a wear loss of about 0.02 mm. Of the specimens used this study, the test specimen with 1.3 wt% of added $SiO_2$ nanocolloid has the best wear resistance because it has the lowest friction coefficient and the smallest wear loss. This specimen also has the highest Vickers hardness and bending strength. In this study, the friction coefficient is inversely proportional to the hardness and bending strength.

Design and Estimation of a Spindle System for Centerless Grinding Machine (무심연삭기 주축계의 설계 및 성능평가)

  • Park C.H.;Hwang J.H.;Oh Y.J.;Cho S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.86-89
    • /
    • 2005
  • Design and estimation of a spindle system which was composed of grinding spindle and regulating spindle for the centerless grinding of ferrule was performed and prototypes of each spindle were manufactured. Loop stiffness of the spindle system was 130 N/${\mu}m$. Although the value was lower than the target value of 150 N/${\mu}m$, as there included 20% of the safety factor, it was enough to machine the ferrule. Rotational accuracies of each spindle were about 0.2${\mu}m$ at the primary speed of 2,300 rpm(grinding spindle) and 300 rpm(regulating spindle). Temperature rises at the same speed were about $4.4\;\~\;4.7^{\circ}C$ in the case of grinding spindle and $1.8^{\circ}C$in the case of regulating spindle, which were well agreed with the designed value. From these results, it was estimated that the prototype of spindle system had a enough performances for the centerless grinding machine to machine the ferrule.

  • PDF

Crystal Growth of Er:YAG and Er,Cr:YSGG for Medical Lasers

  • Yu, Young-Moon;Jeoung, Suk-Jong
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.161-164
    • /
    • 1998
  • Erbium doped garnet crystals were grown by Czochralski method. Relationshipes between crystal quality and crystal growth factors such as pulling rate, rotation rate and concentration of active ions and sensitizers were investigated. Optimum pulling and rotation rate for high quality Er:YAG crystal were 1 mm/hr and 20 rpm and for Er,Cr:YSGG crystal 2-4 mm/hr and 10 rpm respectively. The size of the crystals grown was up to 20-30 mm in diameters and 95-135 mm in length. Er:YAG crystal grown under the nitrogen atmosphere was pink and transparent and Er,Cr:YSGG under the 98% {{{{ { N}_{ 2} }}}} and 2% {{{{ { O}_{2 } }}}} was dark green and transparent. Under the polarizing microscopic observations with crossed polar, striations and {211} core facets were detected. Spectroscopic properties for Er,Cr:YSGG laser rods with <111> axis, 80 mm in length and 6.3 mm in diameter for medical laser applications of 2.79 ${\mu}$m wavelength were manufactured and then laser oscillation was achieved.

  • PDF