• Title/Summary/Keyword: N.P removal

Search Result 1,004, Processing Time 0.028 seconds

Treatment of Livestock Wastewater by Electrochemical Method (전기화확적 방법에 의한 축산폐수의 처리)

  • Heo, Jong-Soo;Chung, Tae-Uk;Lee, Hong-Jae;Baek, Song-Bum;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.332-338
    • /
    • 1999
  • To treat livestock wastewater effectively by electrochemical method using a stainless steel electrode or au aluminum electrode, the effects of voltage, distance of electrodes and PACS(Poly Aluminum Chloride Silicate) dosage on removals of pollutants in batch experiment for investigation the optimum treatment conditions of livestock wastewater were investigated. The results were summarized as follows ; On the effect of voltage, temperature and pH in electrochemical reactor were increased with increase in voltage but EC was a reverse in both electrodes. Removals of COD and T-N were increased with increase in voltage in both electrodes. SS removal was greater than 90% regardless of voltage without doing electrochemical reaction over 15min at 20V or 12min at 30V in both electrodes. T-P removal was over 90% regardless of voltage in both electrodes. On the effect of distance between two electrodes, removals of COD, T-N and T-P were increased with closeness in distance between two electrodes, and SS removal was greeter than 90% regardless of distance between two electrodes in both electrodes. On the effect of PACS dosage, removals of COD, T-N and T-P were increased with increased in PACS dosage up to 200㎎/l in both electrodes. SS removal was greater than 90% regardless of PACS dosage in both electrodes.

  • PDF

Nutrient Removal Potential of water Hyacinth Cultured in Nutrient-enriched Water and Swinery Wastewater (부레옥잠의 수중영양염 제거 잠재력에 관한 고찰)

  • 전만식;김범철
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.1
    • /
    • pp.117-124
    • /
    • 1999
  • Nutrients removal by water hyacinth, Eichhornia crassipes (Mart.) Solms from nutrient enriched waters and swinery wastewater were evaluated. The contents of nitrogen and phosphorus of dried water hyacinth increased from 1.4 to 3.3% and 0.21 to 0.80% when water hyacinth available N and P in the culture medium were increased from 0.7 to 5.0 mgN/1 and 0.06 o 1.5 mgP/l. respectively. Maximum N and P contents were found to be 4.1 and 0.90%, respectively. The significant relationship was observed between the standing crop of water hyacinth and the biomass yield per unit area and time. Biomass yield increased gradually until standing crop reached 15 kg wet wt./m$^2$, and then rapidly decreased. The high biomass yield of up to 0.5 kg/m$^2$/day was obtained in the range of 7 to 20 kg/m$^2$of standing crop. The potential removal rates of N and P by the water hyacinth during summer were found to be 2,250 to 2,710 mgN/m$^2$/day and 570 to 595 mgP/m$^2$/day, respectively, when 15 kg/m$^2$in standing crop and nutrient concentrations of culture medium were ranged from 1.24 to 6.2 mgP/1 and 3.2 to 32.5 mgN/1, respectively, Inorganic N and P concentrations of swinery wastewater were in the range of 82 to 121 mgN/1 and 22 to 79 mgP/1, respectively. Nitrogen and P removal rates of water hyacinth cultured in swinery wastewater were found to be in the ranges of 2,000 to 2,600 mgN/m$^2$/day and 157 to 254 mgP/m$^2$/day, respectively, at 10 times diluted water of swinery wastewater.

  • PDF

Evaluation of Nanoscale Zero-valent Iron for Reductive Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX): Batch and Column Scale Studies (Hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)의 환원적 분해를 위한나노영가철의 성능평가: 회분식 및 칼럼 실험)

  • Lee, Chung-Seop;Oh, Da-Som;Cho, Sung-Heui;Lee, Jin-Wook;Chang, Yoon-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.117-126
    • /
    • 2015
  • Reductive degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by nanoscale zero-valent iron (nZVI) was investigated to evaluate the feasibility of using it for in-situ groundwater remediation. Batch experiments were conducted to quantify the kinetics and efficiency of RDX removal by nZVI, and to determine the effects of pH, dissolved oxygen (DO), and ionic strength on this process. Experimental results showed that the reduction of RDX by nZVI followed pseudo-first order kinetics with the observed rate constant (kobs) in the range of 0.0056-0.0192 min−1. Column tests were conducted to quantify the removal of RDX by nZVI under real groundwater conditions and evaluate the potential efficacy of nZVI for this purpose in real conditions. In column experiment, RDX removal capacity of nZVI was determined to be 82,500 mg/kg nZVI. pH, oxidation-reduction potential (ORP), and DO concentration varied significantly during the column experiments; the occurrence of these changes suggests that monitoring these quantities may be useful in evaluation of the reactivity of nZVI, because the most critical mechanisms for RDX removal are based on the chemical reduction reactions. These results revealed that nZVI can significantly degrade RDX and that use of nZVI could be an effective method for in-situ remediation of RDX-contaminated groundwater.

Kinetics of Removing Nitrogenous and Phosphorus Compounds from Swine Waste by Growth of Microalga, Spirulina platensis

  • Kim, Min-Hoe;Chung, Woo-Taek;Lee, Mi-Kyung;Lee, Jun-Yeup;Ohh, Sang-Jip;Lee, Jin-Ha;Park, Don-Hee;Kim, Dong-Jin;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.455-461
    • /
    • 2000
  • Abstract Spirulina platensis was grown in SWlUe waste to reduce inorganic compowlds and simultaneously produce feed resources. Spirulina platensis prefers nitrogenous compounds in Ibe order: $NH_4^{+}-N>NO_3^{-}-N>simple-N$ such as urea and simple amino acids. It even consumes $NH_4^{+}-N$ first when urea or nitrate are present. Therefore, the content of residual $NH_4^{+}-N$ in Spimlina platensis cultures can be determined by the relative extent of the following processes: (i) algal uptake and assimilation; (ii) ammonia stripping; and (iii) decomposition of urea to NH;-N by urease-positive bacteria. The removal rates of total nitrogen ffild total phosphorus were estimated as an indicator of the treatment effIciency. It was found that Spirulina platensis was able to reduce 70-93% of $P_4^{3-}-P$, 67-93% of inorganic nitrogen, 80-90% of COD, and 37-56% of organic nitrogen in various concentrations of swine waste over 12 days of batch cultivation. The removal of inorganic compounds from swine waste was mainly used for cell growth, however, the organic nitrogen removal was not related to cell growlb. A maximum cell density of 1.52 dry-g/l was maintained with a dilution rate of 0.2l/day in continuous cultivation by adding 30% swine waste. The nitrogen and phosphorus removal rates were correlated to the dilution rates. Based on the amino acid profile, the quality of the proteins in the Spirulina platensis grown in the waste was the same as that in a clean culture.ulture.

  • PDF

Nitrogen and Phosphorus Removal in Domestic Wastewater using SBR Process with Flow Changing Continuous Feed and Cyclic Draw (교대연속유입식 SBR 공정을 이용한 하수중의 질소 및 인 제거)

  • Seo, In-seok;Kim, Hong-suck;Kim, Youn-kwon;Kim, Ji-yeon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.203-208
    • /
    • 2006
  • A continuous feed and cyclic draw SBR process was developed to overcome flow rate fluctuation and to maximize organic matters utilization efficiency for nitrogen and phosphorus removal. The developed SBR process was operated with two parallel reactors. Influent was supplied to one reactor which was not obligately aerated. At the same time, the other reactor was just aerated without supplying influent. In addition this mode was changed periodically. Cycle time was 6hr and aeration time ratio($t_{aer}/t_{total}$) was 0.33, respectively. $COD_{cr}$ and SS removal efficiencies of 95% or higher were achieved. Nitrogen removal was so greatly influenced by influent $COD_{cr}/T-N$ ratio. At influent $COD_{cr}/T-N$ ratio of 5.7, removal efficiencies of ammonia-N, T-N and T-P were 96%, 78% and 55%, respectively. Influent $COD_{cr}/T-N$ of 4 or higher ratio was necessary to achieve 60% or higher nitrogen removal. Organic matters of influent was efficiently utilized in denitrification reaction and consumed COD has a good correlation with removed T-N(about 6.5 mgCOD/mgTN). Continuous feed and cyclic draw SBR process could be one of alternative processes for the removal of nutrients in rural area where $COD_{cr}/T-N$ ratio was low and fluctuation of flow rate was severe.

A Study on the Combined Treatment of Municipal Solid Waste Landfill Leachate (도시폐기물매립지침출수의 병합처리에 관한 연구)

  • 김동민;이병인
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.45-55
    • /
    • 1996
  • An experimental research was conducted in order to study the combined treatment o of municipal landfill leachate and municipal sewage. The landfill leachate was that of Nanjido landfill site, and the municipal sewage was that of Chungnang municipal sewage treatment plant in Seoul. Several sets of bench~scale sequencing batch reactor(SBR) were used as e experimental apparatus. Specially investigated items in this experiment were the removal efficiency of substrate and the influence of treatment time. The experiment lasted for about 2 years. The result are as follows ; 1. The characteristics of leachate were pH 7.5~8.2, BOD 80~336mg/L, COD 908~1,460mg/L, NH3-N 1,409~2,330mg/L, T~P 2.7~7.lmg/L, Cl~3,540~4,085mg/L, a and heavy metals are a very small amount. And the characteristics of sewage were pH 6.9~7.3, BOD 78.4~129.3mg/L, COD 121.2~305.0mg/L, T~N 14.9~36.4mg/L, T-P 2.3~8.9mg/L. 2. The treatability of leachate alone was not treat well. So for the good treatment of leachate, it was necessary to deal with the pretreatment before bi이ogical treatment and a combined treatment of municipal sewage. 3. The various contents of the leachate were 5%, 10%, 30%, and 50%, and the removal efficiency of COD was 86.0%, 82.8%, 60.6%, and 31.7%. The maximum content of the leachate which could be sucessfully treated by SBR in the combined treatment was 10% of that of sewage. And the removal efficiency of COD increased n notably, as its treatment time increased. 4. The various contents of the electrolytic treated leachate were 5%, 10%, 30%, and 50%, and the removal efficiency of COD was 89.9%, 86.1%, 79.2%, and 69.8%. The maximum content of the leachate which could be sucessfully treated by SBR in the combined treatment was 30 % of that of sewage. And the removal efficiency of C COD increased notably, as its treatment time increased.

  • PDF

A Study on Optimum HRT Combination for Efficient Nitrogen Removal at WWTP in Winter Days (동절기 하수처리장에서 효율적인 질소제거를 위한 최적 HRT조합 도출에 관한 연구)

  • Gil, Kyung-Ik;Lee, Un-Gil;Rho, Hae-Yeon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.165-169
    • /
    • 2008
  • It has been reported that most wastewater treatment plants have difficulties in nitrogen removal during winter season due to declined activity of nitrifiers in the condition of low temperature. This study was conducted in order to find out optimum operating condition for efficient nitrogen removal in low temperature. A series of operating conditions with various HRTs of each tank were simulated using the GPS-X program. The optimum HRT combination for effective nitrogen removal was 0.3 hr/0.5 hr/1.36 hr/4.84 hr(PreAx/An/Ax/Ox) with 51.4% of T-N removal efficiency and 57.3% of $NH_4^+$-N removal efficiency.

Effectiveness of Zeolite and Granular Activated Carbon Addition before Starvation for the Performance Recovering of the Sludge Settleability and Removal Efficiency (Starvation전 제올라이트 및 입상활성탄의 주입이 슬러지 침강성 및 오염물질 처리효율 회복에 미치는 영향)

  • Oh, Hye-Ran;Kim, Sang-Soo;Moon, Byung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.234-240
    • /
    • 2010
  • The effectiveness of adding powdered zeolite and granular activated carbon (GAC) before starvation into biological reactor for recovering its performances was investigated. Two types of carrier addition in Sequencing Batch Reactor (SBR) system for non-saline and saline wastewater were evaluated after starvation periods. During the experiment, settleablity (SVI), floc size, fractal dimension, $COD_{Mn}$, T-N, T-P removal efficiencies and recovery time were monitored. When the wastewater feeding was resumed after starvation period for 5days, the SVI increased at the beginning of resumption and then decreased with time in both types. And the larger the floc size and fractal dimension of floc, the more increased removal efficiency for $COD_{Mn}$, T-N and T-P was also. Its performance recovery was strongly correlated with floc size and fractal dimension of activated sludge. After resuming the wastewater feeding, the SVI, floc size, fractal dimension, $COD_{Mn}$, T-N, T-P removal efficiency of SBR with carrier improved and reached its initial value faster compared to those of SBR without carrier.

A Study on the Simultaneous Removal of Organics and Nutrients in Upflow Packed Bed Column Reactor (상향류식 충전탑형 반응기에 의한 유기물 및 영양염류 동시 제거에 관한 연구)

    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.234-238
    • /
    • 2003
  • Biofilm process is preferred to activated sludge process in small domestic wastewater treatment plant because of its simplicity in operation and maintenance. Column reactor filled with waste ceramics and with waste plastics was used to remove pollutants in restaurant wastewater. COD removal at 18 hours of hydraulic retention time (HRT) gave 93.7%, COD removal during the experimental period, where maximum COD removal was observed. Under same condition, average removal of total nitrogen and total phosphorus were 82.3% and 25.9%, respectively Organic and nitrogen were efficiently removed with the HRT of 18 hours or more.

Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge

  • Lee, Sang-Ah;Lee, Nakyeong;Oh, Hee-Mock;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1434-1443
    • /
    • 2019
  • Although chemical oxygen demand (COD) is an important issue for wastewater treatment, COD reduction with microalgae has been less studied compared to nitrogen or phosphorus removal. COD removal is not efficient in conventional wastewater treatment using microalgae, because the algae release organic compounds, thereby finally increasing the COD level. This study focused on enhancing COD removal and meeting the effluent standard for discharge by optimizing sludge inoculation timing, which was an important factor in forming a desirable algae/bacteria consortium for more efficient COD removal and higher biomass productivity. Activated sludge has been added to reduce COD in many studies, but its inoculation was done at the start of cultivation. However, when the sludge was added after 3 days of cultivation, at which point the COD concentration started to increase again, the algal growth and biomass productivity were higher than those of the initial sludge inoculation and control (without sludge). Algal and bacterial cell numbers measured by qPCR were also higher with sludge inoculation at 3 days later. In a semi-continuous cultivation system, a hydraulic retention time of 5 days with sludge inoculation resulted in the highest biomass productivity and N/P removal. This study achieved a further improved COD removal than the conventional microalgal wastewater treatment, by introducing bacteria in activated sludge at optimized timing.