Changes in the rabbit Leydig cell from birth to adulthood were studied in New Zealand white rabbits of 1, 7, 21, 35, 49, 70, 105, 147, 196, and 252 days (n = 8 rabbits per group) of age. The objectives of this study were to understand the fate of the fetal Leydig cells, to determine the changes in serum testosterone levels, and leutenizing hormone-stimulated testosterone production per testis in vitro, and to quantify adult Leydig cells by number and average volume with age. Testes of rabbits were fixed by whole body perfusion using a fixative containing 2.5% glutaraldehyde in cacodylate buffer, processed and embedded in Epon-araldite. Using $1{\mu}m$ sections stained with methylene blue-azure II, qualitative and quantitative (stereological) morphological studies were performed. Testosterone levels in the incubation medium of luteinizing hormone-stimulated (100 ng/ml) testosterone secretion per testis in vitro, and in serum were determined by radioimmunoassay. The average volume of a testis of 1-day-old rabbits was determined as $0.0073cm^3$ and the parameter increased linearly from birth to 252 days ($3.93cm^3$). The volume density of the seminiferous tubules increased with age from 33.76% at day 1 to 88.2% at day 252. The volume density of the interstitium represents 66.24% of the testicular parenchyma at day 1. This proportion progressively diminished during development to reach a value of 11.8% at day 252. The volume density of Leydig cells increased almost linearly from birth (0.001%) to 252 days (2.62%). Leydig cell mass per testis increases from 0.0012 mg to 0.25 mg between days 1 and 35, from 2.66 mg to 44.3 mg between days 49 and 105 and from 65.42 mg and 102.9 mg between days 147 and 252. The absolute numbers of adult Leydig cells per testis increased linearly from birth to 252 days. The average volume of adult Leydig cell on days 1, 7, 21 and 35 was not significantly different; a gradual and continued increase was observed thereafter, reaching a 3-fold increase at 196 and 252 days. Serum testosterone concentrations were not significantly different at day 1 compared days 7, 21, 35. Significant increases were observed at days 49 and 70. Values at days 70 and 105 and days 147, 196, and 252 were not significantly different. LH-stimulated testosterone production per testis in vitro was significantly different at day 1 compared days 7, 21, 35. Significant increases were observed at days 49 and 70. Hormonal values at days 105, 147, 196, and 252 were not significantly different. These data suggested Leydig cell developmental phase can be classified: a neonatal phase (1-7 days), a prepubertal phase (14-49 days) and an adult phase (70-252 days). Immature and mature adult Leydig cells, initially detected at days 7 and 49, respectively, and mature adult Leydig cells were abundant Leydig cell type according to the number and absolute volume per testis form day 49 onwards.