• Title/Summary/Keyword: N-fixation

Search Result 311, Processing Time 0.017 seconds

A study on adsorption-desorption of 42K and 45Ca in soil ameliorants for floriculture (화훼용(花卉用) 토양개량재(土壤改良材)의 42K, 45Ca 흡탈착성(吸脫着性) 비교(比較) 연구(硏究))

  • Kim, Tai-Soon;Kim, Byung-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.153-159
    • /
    • 1987
  • Adsorption and desorption characteristics of $^{42}K$ and $^{45}Ca$ were studied by making use of the natural zeolite, bentonite, and vermiculite. The work included that the fittness tests for the Freundlich and the Langmuir adsorption isotherms and desorption of the radionuclides from adsorbents by extracting with $NH^+_4$ ($1N-NH_4OAc$). The adsorption by the radionuclides are fitted well with both of the adsorption equations. The Langmuir adsorption maximum of $^{42}K$ is higher than that of $^{45}Ca$ by the zeolite and bentonite except vermiculite, and the values of $^{42}K$ decrease in the order of Zeolite (Zt)>Bentonite (Bt)>Vemiculite (Vt). As for $^{45}Ca$, the maximum adsorption values decrease in the order of Bt>Vt>Zt. The ionic radii of K and Ca seem to be closely related with fixation in the cavity of the zeolite that adsorb more $^{42}K$ than $^{45}Ca$. The smaller ionic size of Ca seems to be resulted in the lower adsorption of $^{45}Ca$ by the zeolite because Ca could leave easily from the cavity. Ionic size of K, however, seems to be similar with size of the cavity. $^{45}Ca$ adsorption by the bentonite, on the other hand, show higher adsorption than $^{42}K$. The higher charge density of the divalent cations than those of the monovalent cations seems to be the main consideration. For the retention strength of the adsorbed $^{42}K$ and $^{45}Ca$ by the adsorbents, a comparison is made by use of the Langmuir constant(k). The results indicated that the constant values for K are smaller than those of Ca in all the adsorbents. It seems that the smaller values of the constant, the weaker retention strength. For $^{42}K$, the percentage of desorption decrease in the order of Zt>Bt>Vt, but in the case of $^{45}Ca$, it decreases in the order of Vt>Zt>Bt. The results show that the weaker binding strength as represented by small value of the Langmuir constant, the higher percentage of the removal except fixing preferably $K^+$ by the vemiculite. In conclusion, the zeolite could adsorb much more $^{42}K$ and remove it more than others. For $^{45}Ca$, the bentonite could adsorb more and desorb less than others.

  • PDF