• Title/Summary/Keyword: N-body simulations

Search Result 83, Processing Time 0.024 seconds

Numerical Simulation on Laminar Flow past a Rotating Circular Cylinder (회전하는 원형 주상체 주위의 층류 유동장의 수치 시뮬레이션)

  • MooN JIN-KooK;PARK JONG-CHUN;YOON HYUN-SIK;CHUN HO-HWAN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.222-228
    • /
    • 2004
  • The effects of rotation on the unsteady laminar flow past a circular cylinder is numerically investigated in the present study. We obtained the numerical solutions for unsteady two-dimensional governing equation for the flow using two different numerical schemes. One is an accurate spectral method and another is finite volume method. Above all, the flow around a stationary circular cylinder is investigated to understand the basic phenomenon of flow separation, bluff body wake. Also, the validation of our own codes, expecially based on FVM, is carried out by the comparison of results obtained from our simulations using two different schemes and previous numerical and experimental studies. By the effect of rotation, the mean lift increases and drag deceases, which well represent the previous study.

  • PDF

VELOCITY DISTRIBUTION OF DARK MATTER GALACTIC HALO

  • OH K. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.30 no.1
    • /
    • pp.95-106
    • /
    • 1997
  • We investigate the velocity distribution of dark matter in the disk of a galaxy like the Milky Way at the solar radius. Using N-body simulations with the total mass and z-component of angular momentum conserved, we calculate the response of a dissipationless dark matter galactic halo during the dissipational collapse of the baryonic matter in spiral galaxy formation. The initial distribution of dark matter and baryonic particles is assumed to be a homogeneous mixture based on a King model. The baryonic matter is assumed to contract, forming the final luminous components of the galaxy, namely the disk and, in some cases, a bulge and central point. Both slow and fast growth of the luminous components are considered. We find that the velocity distribution of dark matter particles in a reference frame rotating slowly about the galaxy center in the plane of the disk is similar to a Maxwellian, but it is somewhat boxier, being flatter at the peak and truncated in the tails of the distribution. We tabulate parameters for the best-fitting Maxwellian and modified-Maxwellian distributions. There is no significant difference between slow collapse and fast collapse for all these results. We were unable to detect any effect of disk formation on the z-dependence of the dark matter density distribution.

  • PDF

A Study on Slipping Phenomenon in a Media Transport System (급지 장치에서의 미끄러짐 현상에 대한 연구)

  • 유재관;이순걸;임성수;김시은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.681-685
    • /
    • 2004
  • A media-feeding (or media-transport) system is a key component in daily consumer systems such as printers, copiers and ATM's. The role of the media-transport system is to feed a medium, which is usually in the form of a thin film, to the main process in a uniform and repeatable manner. Even small slippage between the media and the feeding rollers could significantly degrade the performance of the entire system. The slippage between the medium and the feeding rollers is determined by many parameters which include the friction coefficient between the feeding rollers and the medium material, the angular velocity of the feeding rollers, and the normal force applied by feeding rollers on the medium. This paper investigates the effect of the normal force and the angular velocity of feeding rollers on the slippage of the medium. Authors have constructed a test bed for experiments, which consists of a feeding module and various measuring devices. Using regular paper as media being fed, the authors experimentally measured the slippage of the medium under various normal forces and angular velocities of driving feeding roller. Also the authors developed a novel two-dimensional simulation model for the media-transport system. The paper medium is modeled as a set of multiple rigid bodies interconnected by revolute joints and rotational springs and dampers. Simulations were executed using a multi-body dynamic analysis tool called RecurDy $n^{ⓡ}$. The slippage obtained by the simulation is compared to experimental results.ults.

  • PDF

Halo interactions in the Horizon run 4 simulation

  • L'Huillier, Benjamin;Park, Changbom;Kim, Juhan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.46-46
    • /
    • 2014
  • Interactions such as mergers and flybys play a fundamental role in shaping galaxy morphology. We used the Horizon Run 4 cosmological N-body simulations to study the frequency and the type of halo interactions as a function of the environment, the separation p, the mass ratio q, and the target halo mass. We defined targets as haloes more massive than 10^11 Msun/h, and a target is interacting if it is located within the virial radius of a neighbour halo more massive than 0.4 times the target mass. We find that the interaction rate as a function of time has a universal shape for different halo mass and large-scale density, with an increase and saturation. Larger density yield steeper slopes and larger final interaction rates, while larger masses saturate later. Most interactions happen at large-scale density contrast ${\delta}$ about 10^3, regardless of the redshift. We also report the existence of two modes of interactions in the (p,q) plane, reflecting the nature (satellite or main halo) of the target halo. These two trends strongly evolve with redshift, target mass, and large-scale density. Interacting pairs have similar spins parameters and aligned spins, with radial trajectories, and prograde encounters for non-radial trajectories. The satellite trajectories become less and less radial as time proceed. This effect is stronger for higher-mass target, but independent of the large-scale density.

  • PDF

Role of star formation and resulting properties from equal mass disk merger simulations

  • Ji, In-Chan;Peirani, Sebastien;Yi, Suk-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2012
  • In the hierarchical universe, galaxy merger is predicted to be frequent, and thus it is an important element for understanding galaxy evolution. In particular, star formation is greatly enhanced during the merger. The aim of this study is to understand the position and rate change of star formation caused by equal-mass edge-on mergers. We use the GADGET2- N-body/SPH code, and fully consider gas cooling, star formation, and supernova feedback. We show the star formation rate (SFR), and the magnitude and color evolution of the merger remnants for 18 different configurations varying orbit elements and inclinations of host galaxies against orbit planes. Then we construct the mock images of the remnants and investigate on how equal-mass galaxy merger affects the SFR and color/magnitude evolution while considering dust reddening. We conclude that over 90% mass of SF in equal-mass merger is in the central region. SF in tidal feature involves a small fraction of new stars and thus is difficult to detect unless deep imaging is performed. Around 55 ${\pm}$ 5 percent of gas turns into stars until the final coalescence which typically corresponds to 0.8, 1.2, and 2.5 Gyr for direct, parabolic, and elliptical orbit, respectively. This result is roughly consistent with Cox et al. 2000. We plan to implement this result into semi-analytic model of galaxy formation. Caveats and future work on merging conditions are discussed.

  • PDF

Dynamical Evolution of the Dark Asteroids with Tisserand parameter

  • Kim, Yun-Yeong;Ishiguro, Masateru;Jeong, Jin-Hun;Yang, Hong-Gyu;Usui, Fumihiko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • It has been speculated that there could be dormant or extinct comets in the list of known asteroids, which appear asteroidal but are icy bodies originating from outer solar system. However, little is known about the existence of such objects not only because of their complicated chaotic orbits but also because of the limited physical and chemical information. AKARI infrared space mission gave us brand-new albedo catalog of Near Earth Objects, which clues in a better understanding of dark asteroids using both albedo data and dynamical models could be possible. Dark Asteroids with low () albedos are thought to be dormant or extinct comet candidates due to its similar albedo values with comet nucleus. In addition to this, dynamical models indicate that candidate cometary objects have Tisserand parameter. Based on both observational and dynamical criteria, we obtained 196 dark asteroids lists. We numerically integrated backward their orbits using the N-body code Mercury6 (Chambers 1999) during 10 million years to track the past orbits of bodies. We picked out 14 comet candidates that show abnormal orbits in the past by analyzing orbital elements among 196 candidates. From the dynamical evolution simulations, we finally obtained 3 most-likely comet candidates; 944Hidalgo,2006QL39,andP/SidingSpring.Twoofthemareconsistent with past research; P/Siding Spring is a known comet and 944 Hidalgo is a most-likely comet candidate in asteroid populations. Since they all have stable orbits in nowadays although they have unstable orbit in the past, we could conclude that they may be not active comets but dormant or extinct comets.

  • PDF

Compact Binaries Ejected from Globular Clusters as GW Sources

  • Bae, Yeong-Bok;Kim, Chunglee;Lee, Hyung Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2013
  • Based on N-body simulations, we find out that significant fraction of dynamically formed BH-BH (10 $M_{\odot}$ and NS-NS (1.4 $M_{\odot$ ecah) binaries are ejected from globular clusters. About 30 percent of compact stars are ejected in the form of binary. The merging time of ejected binary depends on the velocity dispersion of globular cluster. Some of ejected binaries have merging time-scales shorter than Hubble time and are expected to produce gravitational waves that can be detectable by the advanced ground-based interferometers. The merger rates of ejected BH-BH and NS-NS binaries per globular cluster are estimated to be 3.5 and 17 per Gyr, respectively. Assuming the spatial density of globular clusters as 8.4 $h^3$ clusters $Mpc^{-3}$ and extrapolating to the horizon distance of the advanced LIGO-Virgo network, we expect the detection rates solely attributed to BH-BH and NS-NS with cluster origin are to be 42 and 1.7 $yr^{-1}$, respectively. Besides, we find out that BH-NS binary ejection hardly occurs in globular clusters and dynamically formed compact binaries may possibly be the source of short GRBs whose locations are far from host galaxies.

  • PDF

Excursion model for the spin distribution of dark matter halos

  • Ahn, Jieun;Kim, Juhan;Shin, Jihye;Kim, Sungsoo S.;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.34.2-34.2
    • /
    • 2013
  • Spin distribution of dark matter halos in a cosmological N-body simulation is well fitted by a log-normal distribution, but the origin of the log-normal like shape is still unknown. To understand the evolution of spin and the origin of spin distribution, we have studied the change of the angular momentum of simulated halos through their merging histories. First, we traced merging histories of the dark matter halos and measured the probability distribution of the angular momentum changes from a series of simulations. We were able to fit the angular momentum changes with the Gaussian distribution in spaces of M, spin, ${\Delta}M$. Using the simulated merging trees and the distribution of angular momentum changes during the merging events, we can recover the spin distribution of halos over the various mass scales.

  • PDF

ANALYSIS OF KOREAN HISTORICAL COMET RECORDS (한국의 고대 혜성 기록 분석)

  • Park, So-Yeon;Chae, Jong-Chul
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.151-168
    • /
    • 2007
  • We have analyzed the comet records in the Korean history books: Samguksagi, Goryeosa, and Joseonwangjosillok. For a comparison, the Chinese and Japanese comet records collected by Kronk (1999) have also been analyzed. Power spectrum of the time series of the comet records is used to find periodic comets. Statistically significant periodicities in the power spectrum are detected at the periods of 38-40 years, about 76 years, and 300-400 years for all Korean, Chinese, and Japanese comet records. We have also calculated the past orbits of some comets that have been recently observed, to check whether or not they were recorded in the history books. We use a multistep method to numerically integrate the comet's orbital motion backward in time to 51 B.C. The gravitational force due to the Sun and the nine planets, non-gravitational force, and the relativistic effects have been considered. Comparison of comet's perihelion passage time and the position on the sky with the historical records shows that the comet Halley were recorded at every passage in both Goryeo and Joseon periods. The orbital motion of the comet Pons-Brooks has also been compared with the Korean records. For the comet Tempel-Tuttle, Swift-Tuttle, and Ikeya-Zhang, we have compared our calculation of the orbital motions with those of the previous studies.

What Shapes Disk Galaxies?: Bar Driven Secular Evolution on Disk Galaxies

  • Kim, Taehyun;Gadotti, Dimitri A.;Athanassoula, Lia;Bosma, Albert;Sheth, Kartik;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.67.3-68
    • /
    • 2016
  • We present evidence of the bar driven secular evolution on disks from z~0.8 to z~0.01. Using $3.6{\mu}m$ images of nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G) and images from the Cosmological Evolution Survey (COSMOS), we find that barred galaxies show a light deficit in the disk surrounding the bar within the bar radius. We quantify this light deficit and find that galaxies with a stronger bar (longer, higher Bar/T) show a more pronounced light deficit. We examine snapshots from N-body simulations and confirm that as a barred galaxy evolves, the bar becomes longer and the light deficit becomes more pronounced. Theoretical studies have predicted that bars evolve by capturing nearby disk stars and employing them to make the bar more elongated and stronger. Therefore the light deficit in the disk is likely produced by bars, and thus bars play a major role in shaping their host galaxies, redistributing not only the gaseous but also the stellar mass within galaxies, with important consequences to their subsequent evolution.

  • PDF