• Title/Summary/Keyword: N-acetyltransferase 1

Search Result 44, Processing Time 0.019 seconds

Urinary Bladder Cancer Risk Factors: A Lebanese Case-Control Study

  • Kobeissi, Loulou Hassan;Yassine, Ibrahim Adnan;Jabbour, Michel Elias;Moussa, Mohamad Ahmad;Dhaini, Hassan Rida
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3205-3211
    • /
    • 2013
  • Background: Bladder cancer is the second most incident malignancy among Lebanese men. The purpose of this study was to investigate potential risk factors associated with this observed high incidence. Methods: A case-control study (54 cases and 105 hospital-based controls) was conducted in two major hospitals in Beirut. Cases were randomly selected from patients diagnosed in the period of 2002-2008. Controls were conveniently selected from the same settings. Data were collected using interview questionnaire and blood analysis. Exposure data were collected using a structured face-to-face interview questionnaire. Blood samples were collected to determine N-acetyltransferase1 (NAT1) genotype by PCR-RFLP. Analyses revolved around univariate, bivariate and multivariate logistic regression, along with checks for effect modification. Results: The odds of having bladder cancer among smokers was 1.02 times significantly higher in cases vs. controls. The odds of exposure to occupational diesel or fuel combustion fumes were 4.1 times significantly higher in cases vs controls. The odds of prostate-related morbidity were 5.6 times significantly higher in cases vs controls. Cases and controls showed different clustering patterns of NAT1 alleles. No significant differences between cases and controls were found for consumption of alcohol, coffee, tea, or artificial sweeteners. Conclusions: This is the first case-control study investigating bladder cancer risk factors in the Lebanese context. Results confirmed established risk factors in the literature, particularly smoking and occupational exposure to diesel. The herein observed associations should be used to develop appropriate prevention policies and intervention strategies, in order to control this alarming disease in Lebanon.

Increased Expression of aac(3)II by Tn3 in Gentamicin - Resistant Bacteria Isolated from Hospital Sewage (병원하수로부터 분리한 Gentamicin 저항성 세균에서 Tn3에 의한 aac(3)II의 발현 증가)

  • 한효심;이문숙;정재성
    • Korean Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.60-64
    • /
    • 2004
  • We tested gentamicin - resistant bacteria isolated from hospital sewage to confirm the presence of aac(3)II encoding aminoglycoside- (3)-N- acetyltransferase by dot-blot hybridization. A probe from the internal fragment of aac(3)II was hybridized to DNA from 41 % (39/95) of gentamicin resistant isolates. PCR was performed with primers from aac(3)II and Tn3. Of 39 strains, 13 strains had Tn3-aac(3)II structure. Minimal inhibitory concentration (MIC) test demonstrated that 18 strains containing Tn3-aac(3)II showed higher resistance to gentamicin than those of other strains. Thirteen strains were identified as 5 Escherichia coli, 3 Acinetobacter johnsonii, 2 Enterobacter agglomerans, 2 Micrococcus luteus, and 1 Pseudomonas facilis. These results suggest that gentamicin-resistant determinant of Tn3-aac(3)II structure was widely distributed in the gentamicin-resistant bacteria.

Structural and Functional Relationship of the Catalytical Subunit of Recombinant Pyruvate Dehydrogenase Phosphatase (rPDPc): Limited Proteolysis (Pyruvate dehydrogenase phosphatase의 catalytical subunit의 구조와 활성에 대한 연구)

  • Kim, Young-Mi
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.1
    • /
    • pp.73-80
    • /
    • 2002
  • Pyruvate dehydrogenase phosphatase (PDP)와 kinase는 당대사시 해당과정에서의 대사 산물인 pyruvate를 acetyl CoA로 만들어 구연산 회로로 진입시켜 주는 효소인 pyruvate dehydrogenase complex (PDC)의 활성을 조절하는 중요한 효소이다. PDP의 catalytic subunit는 PDC의 dihydrolipoamide acetyltransferase (E2), PDP regulatory subunit (PDPr), 그리고 칼슘 결합 도메인 등으로 구성되어 있는 것으로 추측되어지고 있다. 본 연구에서는 그 구조와 기능과의 상관관계를 알아보기 위해 PDPc를 E. coli JM101에서 발현시켜 순수 정제 후 단백분해 효소를 이용한 제한적 가수분해 방법을 이용해 그 구조와 기능과의 상관관계에 대해 연구하고자 하였다 정제된 PDPc는 trypsin, chymotrypsin, Arg-C 그리고 elastase를 이용하여 3$0^{\circ}C$ 그리고 pH 7.0에서 제한적으로 분해시켰으며 각 분해산물의 아미노 말단의 아미노산 배열을 분석하였다. 그 결과 PDPc는 trypsin, chymotrypsin, elastase에 의해 N-terminal의 50 kD과 C-terminal의 10 kD의 두개의 분해산물을 만들었으며, Arg-C에 의해 50kD의 분해산물은 약 35kD와 15kD으로 더 가수분해가 되었다. 이러한 결과로 볼 때 PDPc는 앞에서 추측한데로 세개의 주요한 기능적 도메인으로 이루어져 있음을 알 수 있었다 또한 C-terminal의 10kD은 PDPc의 활성에는 영향을 주지 않는 것으로 밝혀졌으나 다른 도메인의 기능은 더 연구가 되어져야 할 것으로 생각된다.

Human Cytochrome P450 Metabolic Activation in Chemical Toxicity

  • Kim, Dong-Hak;Chun, Young-Jin
    • Toxicological Research
    • /
    • v.23 no.3
    • /
    • pp.189-196
    • /
    • 2007
  • Cytochrome P450 (P450) enzymes are the major catalysts involved in the biotransformation of various drugs, pollutants, carcinogens, and many endogenous compounds. Most of chemical carcinogens are not active by themselves but they require metabolic activation. P450 isozymes playa pivotal role in the metabolic activation. The activation of arylamines and heterocyclic arylamines (HAAs) involves critical N-hydroxylation, usually by P450. CYP1A2 plays an important role in these reactions. Broad exposure to many of these compounds might cause carcinogenicity in animals and humans. On the other hand, P450s can be also involved in the bioactivation of other chemicals including alcohols, aflatoxin B1, acetaminophen, and trichloroethylene, both in humans and in experimental animals. Understanding the P450 metabolic activation of many chemicals is necessary to develop rational strategies for prevention of their toxicities in human health. An important part is the issues of extrapolation between species in predicting risks and variation of P450 enzyme activities in humans.

The Ribostamycin Biosynthetic Gene Cluster in Streptomyces ribosidificus: Comparison with Butirosin Biosynthesis

  • Subba, Bimala;Kharel, Madan Kumar;Lee, Hei Chan;Liou, Kwangkyoung;Kim, Byung-Gee;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.90-96
    • /
    • 2005
  • A cluster of genes for ribostamycin (Rbm) biosynthesis was isolated from Streptomyces ribosidificus ATCC 21294. Sequencing of 31.892 kb of the genomic DNA of S. ribosidificus revealed 26 open reading frames (ORFs) encoding putative Rbm biosynthetic genes as well as resistance and other genes. One of ten putative Rbm biosynthetic genes, rbmA, was expressed in S. lividans TK24, and shown to encode 2-deoxy-scyllo-inosose (DOI) synthase. Acetylation of various aminoglycoside-aminocyclitol (AmAcs) by RbmI confirmed it to be an aminoglycoside 3-N-acetyltransferase. Comparison of the genetic control of ribostamycin and butirosin biosynthesis pointed to a common biosynthetic route for these compounds, despite the considerable differences between them in genetic organization.

A case-control study on the effects of the genetic polymorphisms of N-acetyltransferase 2 and glutathione S-transferase mu and theta on the risk of bladder cancer (N-Acetyltransferase 2와 glutathione S-transferase mu 및 theta 다형성이 방광암 발생에 미치는 영향에 대한 환자-대조군 연구)

  • Kim, Heon;Kim, Wun-Jae;Lee, Hyung-Lae;Lee, Moo-Song;Kim, Cheol-Hwan;Kim, Ro-Sa;Nan, Hong-Mei
    • Journal of Preventive Medicine and Public Health
    • /
    • v.31 no.2 s.61
    • /
    • pp.275-284
    • /
    • 1998
  • Activities of enzymes involved in the metabolism of various carcinogenic xenobiotics is one of the most important host factors for cancer occurrence. N-acetyltransferase (NAT) and glutathione S-transferases (GST) are enzymes which .educe the toxicity of activated carcinogenic metabolites. Slow N-acetylation and lack of GST mu (GSTMI) were reported as risk factors of bladder cancer. GST theta (GSTT1), which is another type of GST, was reported to be deleted at higher proportion among Koreans. Since cause of bladder cancer is not fully explained by single risk factor, many kinds of enzymes would be involved in the metabolism of carcinogens excreted in urine. This study was performed to investigate whether the polymorphisms of NAT2, GSTM1 and GSTT1 are risk factors of bladder cancer and to evaluate the effects of their interaction on bladder cancer development. Sixty-seven bladder cancer and 67 age- and sex-matched non-cancer patients hospitalized in Chungbuk National University Hospital from March to December 1996, are the subjects of this case-control study. Questionnaire interview was done and the genotypes of NAT2, GSTM1 and GSTT1 were identified using PCR methods with DNA extracted from venous blood. The effects of the polymorphism of NAT2 and GSTM1 and their interaction on bladder cancer were statistically tested after controlling the other risk factors. The frequencies of slow, intermediate, and rapid acetylators were 3.0%, 38.8%, and 58.2% to. the cases, and 7.6%, 40.9%, and 51.5% for the controls, respectively. The risk of bladder cancer was not associated with the increase of NAT2 activity($\chi^2_{trend}=1.18$, P-value>0.05). GSTM1 was deleted in 68.7% of the cases and 49.3% of the controls ($\chi^2=5.21$, P-value<0.05), and the odds ratio (95% CI) was 2.23 (1.12 - 4.56). GSTT1 deletion, the .ate of which were 26.9% for the bladder cancer patients and 43.3% for the controls, was a significant protective factor against bladder cancer. Smoking history turned out to be insignificant as a risk factor of bladder cancer (OR=1.85, 95% CI: 0.85 - 4.03), and occupation could not be tested because of the extremely small number of occupational history related to the increase of bladder cancer. In multiple logistic analysis controlling the effects of other risk factors, GSTM1 deletion was the only significant risk factor for bladder cancer (OR: 2.56, 95% CI: 1.22-5.36, P-value<0.05), but slow acetylation and GSTT1 deletion were not. These results suggest that GSTM1 deletion may be a significant risk factor of bladder cancer. Since there have been much debates on causal relationship between slow acetylation and GSTT1 deletion, and bladder cancer, further studies are needed.

  • PDF

Construction of tat-and nef-defective HIV-1 and screening of natural extracts with anti-HIV-1 activity

  • Lee, Ann-Hwee;Song, Man-Ki;Suh, Young-Ah;Sung, Young-Chul
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.77-77
    • /
    • 1995
  • Human immunodeficiency virus type 1 (HIV-1) contains several nonstructural genes which are required for the viral replication and disease pathogenesis. Among them, tat and nef genes encode an essential transactivator of HIV-1 LTR and a pluripotent protein which seems to be essential for the in vivo but not in vitro viral replication, respectively. We constructed two tat and n of defective HIV-1 and tested for their ability to replicate in several T cells. The defective viruses did not replicate in CD4$\^$+/ T cells, but rescued in the recombinant Jurkat-tat cell which also contains tat gene. The replication of tat and nef defective HIV-1 which expresses chloramphenicol acetyltransferase(CAT) gene was easily detected by a sensitive CAT assay. No revertant was identified during the passages of the mutant viruses for more than two months in Jurkat-tat cells. tat and n of defective HIV-1 could be used instead of wild type viruse for several purposes such as inhibitor screening and development of attenuated AIDS vaccine.

  • PDF

GENETIC SUSCEPTIBILITIES OF CYTOCHROME P450 1A1, 2E1, AND N-ACETYLTRANSFERASE 2 TO THE RISKS FOR KOREAN HEAD AND NECK CANCER PATIENTS (한국인 두경부암종 환자에서 Cytochrome P450 1A1, 2E1 및 N-acetyltransferase 2 효소의 다형성 분석에 따른 유전적 감수성에 대한 연구)

  • Lee, Young-Soo;Kim, Te-Gyun;Woo, Soon-Seop;Shim, Kwang-Sub;Kong, Gu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.4
    • /
    • pp.373-382
    • /
    • 2000
  • Individual genetic susceptibilities to cancers may result from several factors including differences in xenobiotics metabolism to chemical carcinogens, DNA repair, altered oncogenes and suppressor genes, and environmental carcinogen exposures. Among them, genetic polymorphisms of metabolizing enzymes to chemical carcinogens have been recognized as a major important host factors in human cancers. They have two main types of enzymes: the phase I cytochrome P-450 mediating enzymes (CYPs) and phase II conjugating enzymes. The purpose of this study is to determine the frequencies of genotypes of phase I (CYP1A1 and CYP2E1) and phase II (NAT2) metabolizing enzymes in healthy control and head and neck cancer patients of Korean and to identify the relative high risk genotypes of these metabolizing enzymes to head and neck cancer in Korean. The author has analyzed 132 head and neck cancer patients and 113 healthy controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results were as following; 1. The frequencies of genotypes of CYP1A1, CYP2E1 and NAT2 in healthy control were as following; CYP1A1 exon 7 polymorphism; Ile/Ile: Ile/Val: Val/Val = 59.3%: 36.3%: 4.4% CYP2E1 Pst I polymorphism, C1/C1: C1/C2: C2/C2 = 61.1%: 32.1%: 6.2% NAT2 polymorphism; F/F: F/S: S/S = 43.4%: 48.7%: 8.0% 2. In analysis of phase I enzyme, Val/Val genotype in CYP1A1 exon 7 polymorphism and C2/C2 genotype in CYP2E1 Pst I polymorphism were associated with relative high risks to head and neck cancers (Odds' ratio: 2.09 and 1.37, respectively). 3. Among the genotypes of NAT2 enzyme polymorphism, S/S genotype of NAT2 enzyme had 1.03 times of relative risk to head and neck cancers. 4. In combined genotyping of CYP1A1, CYP2E1, and NAT2 enzymes polymorphisms, the patients with Val/Val and C1/C1, C2/C2 and fast acetylator, and Val/Val and fast acetylator had higher relative risks than the patients with each baseline of combined genotypes (Odds' ratio: 2.82, 1.98 and 2.1, respectively). These results suggest the combined genotypes of Val/Val and C1/C1, C2/C2 and fast acetylator, and Val/Val and fast acetylator were more susceptible to head and neck cancers in Korean. And genotyping of metabolizing enzymes could be useful for predicting individual susceptibility to head and neck cancer.

  • PDF

N-Acetyltransferase 2 Gene Polymorphisms are Associated with Susceptibility to Cancer: a Meta-analysis

  • Tian, Fang-Shuo;Shen, Li;Ren, Yang-Wu;Zhang, Yue;Yin, Zhi-Hua;Zhou, Bao-Sen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5621-5626
    • /
    • 2014
  • N-acetyltransferase 2 (NAT2) is a polymorphic enzyme that plays an important role in the metabolism of various potential carcinogens. In recent years, a number of studies have been carried out to investigate the relationship between the rs1799930 and rs1799931 polymorphism in NAT2 and cancer risk in multiple populations for different types of cancer. However, the results were not consistent. Therefore, we performed a meta-analysis to further explore the relationship between NAT2 polymorphism and the risk of cancer. A total of 21 studies involving 15, 450 subjects for rs1799930 and 13, 011 subjects for rs1799931 were included in this meta-analysis. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess strength of associations. We also evaluated the publication bias and performed a sensitivity analysis. Overall, our results showed an apparent significant association between the NAT2 rs1799930 polymorphism and cancer susceptibility in Asians (GA vs. GG: OR=1.22, 95% CI=1.03-1.45; dominant model: OR=1.22, 95% CI=1.03-1.43) and population-based controls (GA vs. GG: OR=1.10, 95% CI=1.01-1.19; dominant model: OR=1.09, 95% CI=1.01-1.18). In contrast, a significant association was observed between the NAT2 rs1799931 G>A polymorphism and decreased cancer susceptibility in overall meta-analysis (AA vs. GG: OR=0.55, 95% CI=0.33-0.93; GA vs. GG: OR=1.00, 95% CI=0.88-1.14; dominant model: OR=0.97, 95% CI=0.86-1.10; recessive model: OR=0.56, 95% CI=0.34-0.94) and the Asian group (AA vs. GG: OR=0.50, 95% CI=0.26-0.94; recessive model, OR=0.50, 95% CI=0.27-0.94). We found that the NAT2 rs1799930 may be a risk factor, while the NAT2 rs1799931 polymorphism is associated with a decreased risk of cancer and is likely a protective factor against cancer development.

Changes in Body Growth and Growth-Related Genes under Different Photoperiods in Olive Flounder, Paralichthys olivaceus

  • Kim, Byeong-Hoon;Lee, Chi-Hoon;Choi, Song-Hee;Lee, Young-Don
    • Development and Reproduction
    • /
    • v.23 no.2
    • /
    • pp.149-160
    • /
    • 2019
  • This study examined the effects of different photoperiod conditions on olive flounder (Paralichthys olivaceus), a commercially important species in Korea. Daily variations in the expression of mRNA for the growth-related genes arylalkylamine N-acetyltransferase2 (AANAT2), preprosomatostatin1 (PSS1), and growth hormone (GH) were examined under a 12 h light:12 h dark photoperiod. All the genes were expressed at higher level during the dark period. Melatonin injections increased the expression of GH, but did not significantly affect the expression of PSS. Under short-day conditions (10 h:14 h), the fish gained more weight than under long-day conditions (14 h:10 h). A long nighttime induced melatonin secretion and increased the expression of GH mRNA, promoting weight gain in this species. Therefore, we thought that the long day condition in raising olive flounder may be effective in inducing body growth.