• Title/Summary/Keyword: N-acetyl neuraminic acid

Search Result 7, Processing Time 0.034 seconds

Development of a Rapid Spectrophotometric Method for Detecting Bacterial Mucinase Complex

  • Kim, Yoon-Hee;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.345-348
    • /
    • 2002
  • A rapid spectrophotometric method for detecting the mucinase complex was developed. Bovine submaxillary mucin is cleaved by commercial mucinase between the oligosaccharide chain and the side chain of peptide linkage, thereby liberating the N-acetyl neuraminic acid (NANA). The release of NANA resulted in an increase of absorbance at 280 nm. The susceptibility to NANA by the new method was found to be at least 10-fold more sensitive than the thiobarbituric acid method. Moreover, the quantification of NANA released from mucin by commercial neuraminidase and partially purified Vibrio parahaemolyticus mucinase showed a good linear correlation in proportion to the concentration of the enzyme used. These results demonstrate that the rapid identification of mucin degradation can be determined by a spectrophotometric assay, thereby providing a new, fast, and sensitive method for assaying the bacterial mucinase complex.

A Study on Purification Process of Sialic Acid from Edible Bird's Nest Using Affinity Bead Technology (식용 제비집으로부터 비극성 비드기술을 활용한 시알산의 분리정제방법에 관한 연구)

  • Kim, Dong-Myong;Jung, Ju-Yeong;Lee, Hyung-Kon;Kwon, Yong-Sung;Baek, Jin-Hong;Han, In-Suk
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.81-90
    • /
    • 2020
  • Sialic acid, which is contained in about 60-160 mg/kg in the edible bird's nest (EBN), is known to facilitate in the proper formation of synapses and improve memory function. The objective of this study is to extract effectively the sialic acid from edible bird's nest using affinity bead technology (ABT). After preparing the non-polar polymeric bead "KJM-278-28A" having a porous network structure, and then desorbed sialic acid was concentrated and dried. The analysis of the physicochemical properties of bead "KJM-278-28A" showed that the particle size was 400-700 ㎛, the moisture holding capacity was 67-70%, the surface area (BET) was 705-900 ㎡/g, and the average pore diameter 70-87 Å. The adsorption capacity of the bead "KJM-278-28A" for sialic acid was shown a strong physical force to bind sialic acid to the bead surface of 400 mg/L. In addition, as a result of analyzing the adsorption and desorption effects of sialic acid on water, ethanol, and 10% ethanol on the bead, it was confirmed that desorption effectively occurs from the beads when only ethanol is used. As a result of HPLC measurement of the separated sialic acid solution, a total of four sialic acid peaks of N-acetyl-neuraminic acid (Neu5Ac), α,β-anomer of Neu5Ac and N-glycoly-neuraminic acid were identified. Through these results, it was confirmed that it is possible to separate sialic acid from EBN extract with efficient and high yield when using ABT.

Classification, Structure, and Bioactive Functions of Oligosaccharides in Milk

  • Mijan, Mohammad Al;Lee, Yun-Kyung;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.631-640
    • /
    • 2011
  • Milk oligosaccharides are the complex mixture of six monosaccharides namely, D-glucose, D-galactose, N-acetyl-glucosamine, N-acetyl-galactosamine, L-fucose, and N-acetyl-neuraminic acid. The mixture is categorized as neutral and acidic classes. Previously, 25 oligosaccharides in bovine milk and 115 oligosaccharides in human milk have been characterized. Because human intestine lacks the enzyme to hydrolyze the oligosaccharide structures, these substances can reach the colon without degradation and are known to have many health beneficial functions. It has been shown that this fraction of carbohydrate can increase the bifidobacterial population in the intestine and colon, resulting in a significant reduction of pathogenic bacteria. The role of milk oligosaccharides as a barrier against pathogens binding to the cell surface has recently been demonstrated. Milk oligosaccharides have the potential to produce immuno-modulation effects. It is also well known that oligosaccharides in milk have a significant influence on intestinal mineral absorption and in the formation of the brain and central nervous system. Due to its structural resemblance, bovine milk is considered to be the most potential source of oligosaccharides to produce the same effect of oligosaccharides present in human milk. This review describes the characteristics and potential health benefits of milk oligosaccharides as well as the prospects of oligosaccharides in bovine milk for use in functional foods.

Replacement of the antifreeze-like domain of human N-acetylneuraminic acid phosphate synthase with the mouse antifreeze-like domain impacts both N-acetylneuraminic acid 9-phosphate synthase and 2-keto-3-deoxy-D-glycero-Dgalacto- nonulosonic acid 9-phosphate synthase activities

  • Reaves, Marshall Louis;Lopez, Linda Carolyn;Daskalova, Sasha Milcheva
    • BMB Reports
    • /
    • v.41 no.1
    • /
    • pp.72-78
    • /
    • 2008
  • Human NeuNAc-9-P synthase is a two-domain protein with ability to synthesize both NeuNAc-9-P and KDN-9-P. Its mouse counterpart differs by only 20 out of 359 amino acids but does not produce KDN-9-P. By replacing the AFL domain of the human NeuNAc-9-P synthase which accommodates 12 of these differences, with the mouse AFL domain we examined its importance for the secondary KDN-9-P synthetic activity. The chimeric protein retained almost half of the ability of the human enzyme for KDN-9-P synthesis while the NeuNAc-9-P production was reduced to less than 10%. Data from the homology modeling and the effect of divalent ions and temperature on the enzyme activities suggest conformational differences between the human and mouse AFL domains that alter the shape of the cavity accommodating the substrates. Therefore, although the AFL domain itself does not define the ability of the human enzyme for KDN-9-P synthesis, it is important for both activities by aiding optimal positioning of the substrates.

Fine Structural Characterization and Localization of Lectin Receptors in the Cultured Fibroblast (배양 섬유 세포에 있어서 세포 표면의 미세구조적 특성과 당단백 (lectin WGA 수용체)의 분포)

  • Kim, Soo-Jin;Hahm, So-Young
    • Applied Microscopy
    • /
    • v.31 no.1
    • /
    • pp.49-57
    • /
    • 2001
  • In this study, the distribution of lectin receptors in culutured fibroblast was explored using colloidal gold label complexed with lectin WGA purified from wheat germ (Triticum vulgare). The lectin WGA gold complex, shown to recognize GlcNAc (N-acetylgalactosamine) and NeuNAc (N-acetylneuraminic acid) regions, was applied to detect binding sites in Lowicryl HM 20 sections viewed under electron microscope Labeled sections of the culutured fibroblast revealed gold particles specifically distributed on the cytoplasm and cell surface of the fibroblast. Labeling of 24 hours culutured fibroblast was then quantified and compared to that of 72 hours culutured fibroblast. 24 hours culutured fibroblast sections resulted in specific gold particle distribution on the cytoplasmic vesicle of the culutured fibroblast. These results indicate that lectin WGA receptors are located in the cytoplasmic vesicle and cell surface of the 24 hours culutured fibroblast, and on the cell surface of the 72 hours culutured fibroblast. Therefore, the GlcNAc and NeuNAc regions on the cell surface appear to be functionally associated with cell-recognition and protection from other cell of the tissue, and linked with secretion and exocytosis of the fibroblast cytoplasm.

  • PDF

Ex Vivo ${1}^H$ MR Spectroscopy: Normal gastric and cancer tissue (정상 위 조직과 위암 조직의 시험관 내 수소자기공명분광)

  • Cho Ji Youn;Shin Oon Jae;Choi Ki Seung;Kim Su Hyun;Eun Choong Ki;Yang Young Il;Lee Jung Hee;Mun Chi Woong
    • Journal of Gastric Cancer
    • /
    • v.3 no.3
    • /
    • pp.151-157
    • /
    • 2003
  • Purpose: In this study, we attempted to ascertain the proton magnetic resonance spectroscopy (${1}^H$ MRS) peak characteristics of human gastric tissue layers and finally to use the metabolic peaks of MRS to distinguish between normal and abnormal gastric specimens. Materials and Methods: Ex-vivo ${1}^H$ MRS examinations of thirty-five gastric specimens were performed to distinguish abnormal gastric tissues invaded by carcinoma cells from normal stomach-wall tissues. High-resolution 400-MHz (9.4-T) ${1}^H$ nuclear magnetic resonance (NMR) spectra of two gastric layers, a proper muscle layer, and a composite mucosasubmucosa layer were compared with those of clinical 64- MHz (1.5-T) MR spectra. Three-dimensional spoiled gradient recalled (SPGR) images were used to determine the size and the position of a voxel for MRS data collection. Results: For normal gastric tissue layers, the metabolite peaks of 400-MHz ${1}^H$ MRS were primarily found to be as follows: lipids at 0.9 ppm and 1.3 ppm; alanine at 1.58 ppm; N-acetyl neuraminic acid (sialic acid) at 2.03 ppm; and glutathione at 2.25 ppm in common. The broad and featureless featureless spectral peaks of the 64-MHz MRS were bunched near 0.9, 1.3, and 2.0, and 2.2 ppm in human specimens without respect to layers. In a specimen (Borrmmann type III) with a tubular adenocarcinoma, the resonance peaks were measured at 1.26, 1.36 and 3.22 ppm. All the peak intensities of the spectrum of the normal gastric tissue were reduced, but for gastric tumor tissue layers, the lactate peak split into 1.26 and 1.39 ppm, and the peak intensity of choline at 3.21 ppm was increased. Conclusion: We found that decreasing lipids, an increasing lactate peak that split into two peaks, 1.26 ppm and 1.36 ppm, and an increasing choline peak at 3.22 ppm were markers of tumor invasion into the gastric tissue layers. This study implies that MR spectroscopy can be a useful diagnostic tool for gastric cancer.

  • PDF