• Title/Summary/Keyword: N-Enhanced $TiO_2$

Search Result 75, Processing Time 0.02 seconds

Enhanced Light Harvesting by Fast Charge Collection Using the ITO Nanowire Arrays in Solid State Dye-sensitized Solar Cells

  • Han, Gill Sang;Yu, Jin Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.463-463
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have generated a strong interest in the development of solid-state devices owing to their low cost and simple preparation procedures. Effort has been devoted to the study of electrolytes that allow light-to-electrical power conversion for DSSC applications. Several attempts have been made to substitute the liquid electrolyte in the original solar cells by using (2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine)-9-9'-spirobi-fluorene (spiro-OMeTAD) that act as hole conductor [1]. Although efficiencies above 3% have been reached by several groups, here the major challenging is limited photoelectrode thickness ($2{\mu}m$), which is very low due to electron diffusion length (Ln) for spiro-OMeTAD ($4.4{\mu}m$) [2]. In principle, the $TiO_2$ layer can be thicker than had been thought previously. This has important implications for the design of high-efficiency solid-state DSSCs. In the present study, we have fabricated 3-D Transparent Conducting Oxide (TCO) by growing tin-doped indium oxide (ITO) nanowire (NWs) arrays via a vapor transport method [3] and mesoporous $TiO_2$ nanoparticle (NP)-based photoelectrodes were prepared using doctor blade method. Finally optimized light-harvesting solid-state DSSCs is made using 3-D TCO where electron life time is controlled the recombination rate through fast charge collection and also ITO NWs length can be controlled in the range of over $2{\mu}m$ and has been characterized using field emission scanning electron microscopy (FE-SEM). Structural analyses by high-resolution transmission electron microscopy (HRTEM) and X-Ray diffraction (XRD) results reveal that the ITO NWs formed single crystal oriented [100] direction. Also to compare the charge collection properties of conventional NPs based solid-state DSSCs with ITO NWs based solid-state DSSCs, we have studied intensity modulated photovoltage spectroscopy (IMVS), intensity modulated photocurrent spectroscopy (IMPS) and transient open circuit voltages. As a result, above $4{\mu}m$ thick ITO NWs based photoelectrodes with Z907 dye shown the best performing device, exhibiting a short-circuit current density of 7.21 mA cm-2 under simulated solar emission of 100 mW cm-2 associated with an overall power conversion efficiency of 2.80 %. Finally, we achieved the efficiency of 7.5% by applying a CH3NH3PbI3 perovskite sensitizer.

  • PDF

Effects of Gibberellic Acid and Abscisic Acid on Proteolysis of Senescing Leaves from Rice Seedlings (노화 수도유묘엽의 단백질분해에 미치는 GA$_3$과 ABA의 영향)

  • Kang, S. M;Kang, N. J;Cho, J. L;Kim, Z. H;Kwon, Y. W
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.4
    • /
    • pp.350-359
    • /
    • 1993
  • The effect of gibberellic acid ($GA_3) and abscisic acid (ABA) on KCl-enhanced proteolysis of senescing leaves of rice(Oryza sativa L. cv. Chilsung) was studied. Emphasis was given to their effects on KCI-enhanced efflux of amino acids and proteinase activity. When treated singly, $GA_3 affected leaf proteolysis little, while ABA increased proteolysis, the rate of amino acid efflux, and ribulose -1,5 -bisphosphate carboxylase / oxygenase (Rubisco)-degrading endoproteinase activity. An additive increase in all three parameters mentioned above was observed when leaves were treated with ABA and KCl. No such an additive effect was found when $GA_3 was treated with KCl. Both $GA_3 and ABA helped to alleviate the KCI-suppressed activity of Rubisco-degrading exoproteinases. The additive increase in proteolysis of rice leaves in the presence of both ABA and KCl could thus be ascribed to a further increase in the efflux of protein hydrolyzates and Rubisco-degrading endoproteinase activity. An increase in proteolysis was accompanied by a decrease in water absorption, and the combined treatment of ABA with KCl resulted in a further reduction of water absorption.

  • PDF

A Series of N-Alkylimidazolium Propylhexanamide Iodide for Dye-Sensitized Solar Cells

  • Lim, Sung-Su;Sarker, Subrata;Yoon, Sun-Young;Nath, Narayan Chandra Deb;Kim, Young-Jun;Jeon, Heung-Bae;Lee, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1480-1484
    • /
    • 2012
  • We report a series of novel imidazolium iodides based ionic liquids (NMIPHI, NAIPHI, and NBIPHI) with different functional groups for the development of a quasi-solid type electrolyte for dye-sensitized solar cells (DSSCs). The diffusion coefficients of redox ions ($I^-$ and $I_3{^-}$) are dependent on the molecular weight and it was higher for lighter salts. Among the three ionic liquids, NMIPHI showed highest efficiency of 4.18% when it was used in a liquid electrolyte of a DSSC with $ca$. 6 ${\mu}m$ thick $TiO_2$ mesoporous film. Even though the efficiency was $ca$. 19% lower than that obtained from a liquid electrolyte composed of PMII. When NMIPHI was mixed with PMII with a molar ratio of 1:1 in a solvent free electrolyte, the efficiency of the DSSCs was enhanced compared to that based on pristine PMII.

A COMPARISON OF FRACTURE STRENGTHS OF PORCELAIN-FUSED-TO-TITANIUM CROWN AMONG TITANIUM SURFACE COATING TREATMENTS (타이타늄 표면 코팅 처리에 따른 타이타늄도재관의 파절강도 비교)

  • Kim, Ji-Hye;Park, Sang-Won;Vang, Mong-Sook;Yang, Hong-So;Park, Ha-Ok;Lim, Hyun-Pil;Oh, Gye-Jeong;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Kyung-Ku
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.203-215
    • /
    • 2007
  • Statement of problem: Titanium and its alloy, with their excellent bio-compatibility and above average resistance to corrosion, have been widely used in the field of dentistry. However, the excessive oxidization of titanium which occurs during the process of firing on porcelain makes the bonding of titanium and porcelain more difficult than that of the conventional metal-porcelain bonding. To solve this problem related to titanium-porcelain bonding, several methods which modify the surfaces, coat the surfaces of titanium with various pure metals and ceramics, to enable the porcelain adhesive by limiting the diffusion of oxygen and forming the adhesive oxides surfaces, have been investigated. Purpose: The purpose of this study was to know whether the titanium-porcelain bonding strength could be enhanced by treating the titanium surface with gold and TiN followed by fabrication of clinically applicable porcelain-fused-to-titanium crown Material and method: The porcelain-fused-to-titanium crown was fabricated after sandblasting the surface of the casting titanium coping with $Al_2O_3$ and treating the surface with gold and TiN coating followed by condensation and firing of ultra-low fusing porcelain. To compare with porcelain-fused-to-titanium crowns, porcelain-fused-to-gold crowns were fabricated and used as control groups. The bonding strengths of porcelain-fused-to-gold crowns and porcelain-fused-totitanium crowns were set for comparison when the porcelain was fractured on purpose to get the experimental value of fracture strength. Then, the surface were examined by SEM and each fracturing pattern were compared with each other Result:Those results are as follows. 1. The highest value of fracture strength of porcelain-fused-to-titanium crowns was in the order of group with gold coating, group with TiN coating, group with $Al_2O_3$ sandblasting. No statistically significant difference was found among the three (P>.05). 2. The porcelain-fused-to-gold crowns showed the highest value in bonding strength. The bonding strength of crowns porcelain-fused-to-titanium crowns of rest groups showed bonding strength reaching only 85%-94% of that of PFG, though simple comparision seemed unacceptable due to the difference in materials used. 3. The fracturing patterns between metal and porcelain showed mixed type of failure behavior including cohesive failure and adhesive failure as a similar patterns by examination with the naked eye and SEM. But porcelain-fused-to-gold crowns showed high incidence of adhesive failure and porcelain-fused-to-titanium crowns showed high incidence of cohesive failure. Conclusion: Above results proved that when fabricating porcelain-fused-to-titanium crowns, treating casting titanium surface with gold or TiN was able to enhance the bonding strength between titanium and porcelain. Mean value of masticatory force was found to showed clinically acceptable values in porcelain bonding strength in all three groups. However, more experimental studies and evaluations should be done in order to get better porcelain bonding strength and various surface coating methods that can be applied on titanium surface with ease.

New Liquid Crystal-Embedded PVdF-co-HFP-Based Polymer Electrolytes for Dye-Sensitized Solar Cell Applications

  • Vijayakumar, G.;Lee, Meyoung-Jin;Song, Myung-Kwan;Jin, Sung-Ho;Lee, Jae-Wook;Lee, Chan-Woo;Gal, Yeong-Soon;Shim, Hyo-Jin;Kang, Yong-Ku;Lee, Gi-Won;Kim, Kyung-Kon;Park, Nam-Gyu;Kim, Suhk-Mann
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.963-968
    • /
    • 2009
  • Liquid crystal (LC; E7 and/or ML-0249)-embedded, poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based, polymer electrolytes were prepared for use in dye-sensitized solar cells (DSSCs). The electrolytes contained 1-methyl-3-propylimidazolium iodide (PMII), tetrabutylammonium iodide (TBAI), and iodine ($I_2$), which participate in the $I_3^-/I^-$ redox couple. The incorporation of photochemically stable PVdF-co-HFP in the DSSCs created a stable polymer electrolyte that resisted leakage and volatilization. DSSCs, with liquid crystal(LC)-embedded PVdF-co-HFP-based polymer electrolytes between the amphiphilic ruthenium dye N719 absorbed to the nanocrystalline $TiO_2$ photoanode and the Pt counter electrode, were fabricated. These DSSCs displayed enhanced redox couple reduction and reduced charge recombination in comparison to that fabricated from the conventional PVdF-co-HFP-based polymer electrolyte. The behavior of the polymer electrolyte was improved by the addition of optimized amounts of plasticizers, such as ethylene carbonate (EC) and propylene carbonate (PC). The significantly increased short-circuit current density ($J_{sc}$, $14.60\;mA/cm^2$) and open-circuit voltage ($V_{oc}$, 0.68 V) of these DSSCs led to a high power conversion efficiency (PCE) of 6.42% and a fill factor of 0.65 under a standard light intensity of $100\;mW/cm^2$ irradiation of AM 1.5 sunlight. A DSSC fabricated by using E7-embedded PVdF-co-HFP-based polymer electrolyte exhibited a maximum incident photon-to-current conversion efficiency (IPCE) of 50%.