• Title/Summary/Keyword: N-Acetyltranylcypromine

Search Result 2, Processing Time 0.018 seconds

Identification of N-acetyl and hydroxylated N-acetyltranylcypromine from tranylcypromine-dosed rat urine

  • Kang, Gun-Il;Chung, Soon-Young
    • Archives of Pharmacal Research
    • /
    • v.7 no.1
    • /
    • pp.65-68
    • /
    • 1984
  • Mechanism of the monoamine oxidase inhibition by tranylcypromine was studied in relation to its metabolism to reactive apecies. A metabolic study performed to collect general biotransformation pathway in rats provided GC/MS evidence for the detection of two new metabolites, N-acetyl and hydroxylated N-acetyltranylacypromine.

  • PDF

Detection of N-Acetyltranylcypromine and Glucuronide of Phenyl-Hydroxylated N-Acetyltranlcypromine from Tranylcypromine-Dosed Rat Urine : Pharmacological Implications

  • Kang, Gun-Il;Choi, Hee-Kyung
    • Archives of Pharmacal Research
    • /
    • v.9 no.2
    • /
    • pp.99-110
    • /
    • 1986
  • In order to use for metabolic studies of tranylcypromine (TCP), TCP-phenyl-$d_{5}$ was synthesized via the intermediates, 3-benzoylpropionic acid-$d_{5}$ and trans-2-phenylcyclopropanecarboxylic acid-$d_{5}$ -TCP(0.22 mmole/kg) and its deuterated analog were administered s. c. to the rats and GC/MS analyses of the urines led to the detection of N-acetyltranylcypromine (ATCP) and glucuronide conjugate of phenyl-hydroxylated ATCP. MAO activities in rat brain were measured using serotonin as the substrate. In vitro $IC_{50}$ of ATCP was determined to be $10^{-3}M$. The inhibitions by ATCP were not dependent on the preincubation time and were reversed by washing sedimented mitochondrial pellets after the preincubation. In vivo MAO inhibitions at various times of 0.5, 1.5, 3, 6, 12, and 23 hr after the administration of 0.4 mmole/kg (i. p. ) of ATCP were found to be 0.13, 73, 90, 89, and 74 %, respectively. Similarly, the inhibition percents by 0.015 mmole/kg (i. p. ) of TCP were 94, 99, 95, 91, 71 and 49%. The results strongly suggest that deacetylated product of ATCP may account for its in vivo MAO inhibition. The relationship between the metabolism via phenyl-hydroxylation and the in vivo potency of TCP was examined by QSAR study and it was found that groupings discriminating between the compounds with p-substituents and those without them only ensure high correlations, suggesting that ring-hydroxylation which occurs at the para position in most of the compounds is a determining factor to the potency of TCP.

  • PDF