• 제목/요약/키워드: N-6-Benzyladenine

검색결과 24건 처리시간 0.022초

In vitro Micropropagation and Root Induction of Pear Genetic Resources

  • Jae-young Song;Jinjoo Bae;Woohyung Lee;Jung-ro Lee;Munsup Yoon
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.63-63
    • /
    • 2022
  • Pear (Pyrus spp.) is a typical fruit and grown in the temperate climate regions throughout the world. Development of appropriate methods for in vitro propagation and root induction are important to increase the production rate and plant quality rapidly. This study was conducted to find the most appropriate media conditions for in vitro propagation and rooting of three pear cultivars, 'Barttlett', 'BaeYun No.3' and 'Oharabeni'. In vitro propagation was induced on Murashige and Skoog medium (MS) with 2.0 mg/L N6-benzyladenine (BA) and 0.2 mg/L indole-3-butyric acid (IBA) medium. For root induction of these cultivars, the shoot explants of the propagated plants were cultured on two different media containing 1/2 MS medium containing 0.2 mg/L IBA with 15 g/L Sucrose (Rooting Medium 1, RM1) and 1/4 Linsmaier and Skoog medium (LS) medium containing 1 mg/L IBA and 1 mg/L NAA hormone with 7.5 g/L glucose (Rooting Medium, RM2) and after 2 weeks, the plants on the RM2 medium are transferred on RM1 medium (RM2 condition). After nearly seven weeks, percentage of rooting formation were 22.2% in RM1 and 30% in RM2 conditions for Barttlett and 70% in RM1 and 60% in RM2 conditions for Oharabeni cultivars. No differences in these cultivars were observed between RM1 and RM2 conditions. However, BaeYun No.3 cultivar was observed 0% in RM1 and 72.7% in RM2 conditions. This study will help to propagation and root induction of in vitro plants for various pear cultivars.

  • PDF

Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation

  • TaeKyung Nam;Wonku Kang;Sangtaek Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1206-1212
    • /
    • 2023
  • The Wnt/β-catenin pathway plays essential roles in regulating various cellular behaviors, including proliferation, survival, and differentiation [1-3]. The intracellular β-catenin level, which is regulated by a proteasomal degradation pathway, is critical to Wnt/β-catenin pathway control [4]. Normally, casein kinase 1 (CK1) and glycogen synthase kinase-3β (GSK-3β), which form a complex with the scaffolding protein Axin and the tumor suppressor protein adenomatous polyposis coli (APC), phosphorylate β-catenin at Ser45, Thr41, Ser37, and Ser33 [5, 6]. Phosphorylated β-catenin is ubiquitinated by the β-transducin repeat-containing protein (β-TrCP), an F-box E3 ubiquitin ligase complex, and ubiquitinated β-catenin is degraded via a proteasome pathway [7, 8]. Colorectal cancer is a significant cause of cancer-related deaths worldwide. Abnormal up-regulation of the Wnt/β-catenin pathway is a major pathological event in intestinal epithelial cells during human colorectal cancer oncogenesis [9]. Genetic mutations in the APC gene are observed in familial adenomatous polyposis coli (FAP) and sporadic colorectal cancers [10]. In addition, mutations in the N-terminal phosphorylation motif of the β-catenin gene were found in patients with colorectal cancer [11]. These mutations cause β-catenin to accumulate in the nucleus, where it forms complexes with transcription factors of the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family to stimulate the expression of β-catenin responsive genes, such as c-Myc and cyclin D1, which leads to colorectal tumorigenesis [12-14]. Therefore, downregulating β-catenin response transcription (CRT) is a potential strategy for preventing and treating colorectal cancer. Plant cytokinins are N6-substituted purine derivatives; they promote cell division in plants and regulate developmental pathways. Natural cytokinins are classified as isoprenoid (isopentenyladenine, zeatin, and dihydrozeatin), aromatic (benzyladenine, topolin, and methoxytopolin), or furfural (kinetin and kinetin riboside), depending on their structure [15, 16]. Kinetin riboside was identified in coconut water and is a naturally produced cytokinin that induces apoptosis and exhibits antiproliferative activity in several human cancer cell lines [17]. However, little attention has been paid to kinetin riboside's mode of action. In this study, we show that kinetin riboside exerts its cytotoxic activity against colon cancer cells by suppressing the Wnt/β-catenin pathway and promoting intracellular β-catenin degradation.

금새우난초(Calanthe striata f. sieboldii Decne. ex Regel)종자의 비공생 발아 및 신초증식 (Asymbiotic germination and seedling growth of Calanthe striata f. sieboldii Decne. ex Regel)

  • 배기화;김수영
    • Journal of Plant Biotechnology
    • /
    • 제42권3호
    • /
    • pp.239-244
    • /
    • 2015
  • 본 연구는 자생 난초과식물인 금새우난초의 기내 비대배 유도, 발아 및 배직경에 미치는 몇 가지 영향(NaOCl, 배지, 식물생장조절제)을 조사하기 위해 수행되었다. 1% NaOCl을 30분간 처리한 후 POM배지에 배양할 경우, 비대배 유도는 28.3%, 발아율은 54.8%, 배직경은 $205.8{\mu}m$로 가장 높게 조사되었다. NaOCl 무처리 종자를 POM배지에 배양할 경우, 비대배 유도는 8.5%, 발아율은 13.4%, 배직경은 $14.6{\mu}m$로 조사되었다. 또한 식물생장조절물질의 처리가 발아에 미치는 영향을 조사한 결과, 1.0 mg/L의 BA 처리구(95.6%)의 발아율은 대조구(54.5%)에 비해 1.75배 높게 조사되었다. AC와 sucrose의 처리 농도가 기내 식물체 생장에 미치는 영향을 조사한 결과, 엽장은 10 g/L의 sucrose 처리구에서 6.8 cm로 가장 길었고, 대조구는 3.3 cm로 가장 짧았다. 근장은 50 g/L의 sucrose 처리구에서 5.8 cm로 가장 길었고, 대조구는 1.7 cm로 가장 짧았다. 생중량과 건중량은 AC와 sucrose 처리구가 대조구에 비해 2~5배 이상 높은 결과를 보였다. 결과적으로 본 연구는 금새우난초의 기내 발아 및 증식에 미치는 몇 가지 요인에 관해 구체적인 결과를 제시하였고, 이러한 결과는 향후 자생 난초과식물의 증식 및 보존전략 개발에 중요한 기초자료로 제공 될 것이다.

Adventitious root induction in Ophiorrhiza prostrata: a tool for the production of camptothecin (an anticancer drug) and rapid propagation

  • Martin, Kottackal Poulose;Zhang, Chun-Lai;Hembrom, Manoj Emanuel;Slater, Adrian;Madassery, Joseph
    • Plant Biotechnology Reports
    • /
    • 제2권2호
    • /
    • pp.163-169
    • /
    • 2008
  • Roots of Ophiorrhiza prostrata D. Don serve as a rich source of camptothecin (CPT), an anticancer drug. Because of the large-scale collection of its roots, the plant has become a threatened species. The present study accomplishes the induction of adventitious roots as a means for the production of CPT as well as for the large-scale propagation of this anticancer drug plant using leaf and internode explants. The biomass yield and CPT content of adventitious roots induced from different explants were compared to roots developed on ex vitro rooted stem cuttings. Adventitious roots were produced on half-strength Murashige and Skoog (MS) medium supplemented with $10.74{\mu}M$ ${\alpha}-naphthaleneacetic$ acid and $2.32{\mu}M$ kinetin at mean fresh weights of 0.753, 0.739 and 0.748 g roots from leaf, internode and shoot, respectively. CPT yield from in vitro derived roots after 50, 80 and 120 days of incubation (0.028, 0.06 and 0.1% dry weight, respectively) was not significantly different from those harvested at the same age from ex vitro rooted (0.03, 0.06 and 0.13%, respectively) stem cuttings. CPT from subcultured roots derived from solid (0.08%) medium was lower than from suspension culture medium (0.12%). Subsequent cultures of the adventitious roots showed a stable production of CPT (0.16%). The yield of CPT from 360-day-old plant-derived roots was 0.19%. Elicitation using methyl jasmonate and acetyl salicylic acid exhibited no enhancement in CPT yield. In vitro propagation through direct shoot regeneration was achieved from the adventitious roots upon transfer to MS medium with $8.87{\mu}M$ $N^6-benzyladenine$ (BA) and $2.46{\mu}M$ indole-3-butyric acid (IBA) with a mean of 21.2 shoots per culture in 50 days. The shoots upon subculture on medium having the same level of BA and IBA underwent rapid proliferation. The shoots transferred to field conditions after in vitro rooting exhibited 95% survival. Adventitious root induction, from leaf and internode explants, enables the feasible production of CPT as well as the large-scale rapid propagation of this species which can safeguard it from extinction.