• 제목/요약/키워드: N fertilizer treatment

검색결과 548건 처리시간 0.029초

밭토양 조건에서 유박과 아미노산 비료의 질소 무기화량 추정 (Nitrogen Mineralization in Soil Amended with Oil-Cake and Amino Acid Fertilizer under a Upland Condition)

  • 임종욱;김송엽;윤영은;김장환;이상범;이용복
    • 한국유기농업학회지
    • /
    • 제23권4호
    • /
    • pp.867-873
    • /
    • 2015
  • 유기자재의 토양 중 질소 무기화 특성을 구명하기 위해 유박(CF-I, CF-II), 아미노산(AAF-I, AAF-II)을 각각 처리하여 28주간 항온시험을 실시하였다. 항온기간 동안 누적 질소 무기화량을 1차 반응 속도식(first-order kinetics)에 적용하여 잠재적 질소무기화량($N_0$)를 평가 한 결과 AAF-II에서 27.71 N mg/100g로 가장 높았으며, CF-I에서 21.69 N mg/100g로 가장 낮았다. 그리고 잠재적 순질소무기화량($N_0$ treatment - $N_0$ control)은 CF-I, CF-II, AAF-I, AAF-II 처리에서 각각 2.55, 5.83, 3.66, 8.57 N mg/100g으로 나타났으며, 28주 동안 실제 질소무기 화량의 97.3-112.9%에 해당되었다. 특히 유박, 아미노산을 처리한 토양의 유기태 질소의 무기화 반감기($t_{1/2}$)는 17-21일로 유박과 아미노산 비료에 포함된 질소는 3주 이내에 무기화되는 것을 확인하였다. 따라서 유기농업에 이용되는 유박과 아미노산에 함유된 질소의 1/2는 3주 이내에 모두 무기화되는 것으로 나타났다.

Effect of Nitrogen Fertilizer Application on Yield and Quality of Korean Soft Wheat Cultivar 'Goso'

  • Han-yong Jeong;Yulim Kim;Chuloh Cho;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Jiyoung Shon
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.63-63
    • /
    • 2022
  • Wheat flour can be categorized into bread, all-purpose, cake flour according to its protein content. Since optimal wheat flour protein content is different for each end use, it is necessary to diversify the nitrogen fertilizer methods depending on the end use and cultivar. Optimal wheat flour protein content of soft wheat (for cake flour) is lowest (<=10%) among all end use, it is necessary to develop nitrogen fertilizer methods for high yield and low protein content. In order to analyze the yield and quality changes of soft wheat as nitrogen fertilizer amount and splitting timing, soft wheat cultivar 'goso' was sown on paddy soil in jeunju, Republic of Korea ('21.10). the amount of nitrogen fertilizer was divided into 4 levels by adjusting 2kg/10a increments from 5.1 to ll.lkg/lOa, and in the N 7.1 and 9.1 kg/1 Oa(standard) treatment, N amount divided into sowing date:regrowing stage=3:7,4:6(standard), 5:5. In regrowing stage, Tiller number and N fertilizer amount at sowing date showed a correlation; y=-121.14x2+792.66x-525.41 (R2=0.77*, y: Tiller number/m2, x: N amount at sowing date(kg/10a)). Tiller number in regrowing stage was the highest when the nitrogen fertilizer amount at sowing date was 3.23kg/10a. spike number per m2 was the highest when N fertilizer was divided into sowing date:regrowing stage=3:7(N amount: 9.1kg/10a). If N fertilizer amount was fixed, grain yield was also the highest when N fertilizer was divided into sowing date :regrowing stage=3:7. Also, N amount at sowing date and grain yield showed no correlation, but N amount at regrowing stage and grain yield showed significant correlation. As N amount increased, protein content also showed a tendency to increase.

  • PDF

Variations of N2O by no tillage and conventional-tillage practices under the different kinds of fertilizer applications on the cultivation of soybean in Korea

  • Yoo, Jin;Oh, Eun-Ji;Kim, Suk-Jin;Woo, Sun-Hee;Chung, Keun-Yook
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.314-314
    • /
    • 2017
  • Anthropogenic activities have increased the concentrations of greenhouse gases, such as $CO_2$, $CH_4$, $N_2O$, HFCs, $SF_6$, and PFCs, in the atmosphere. Among others, $N_2O$ is well known as an important greenhouse gas accounting for 7.9% of the total greenhouse effect and the effect of its emission is 310 times greater than that of $CO_2$. Agricultural $N_2O$ emissions are now thought to contribute to about 60% of the global anthropogenic $N_2O$ emission, which have been increased primarily due to fertilizer N consumption and manure management. Therefore, the reduction of $N_2O$ emissions in agriculture is being required. This study was conducted to determine the variation of $N_2O$ emissions by no-tillage (NT) and conventional tillage (CT) practices in the cultivation of soybean from the sandy loam soils under the different kinds of fertilizer treatments June through September 2016 in Cheong-ju, Republic of Korea. An experimental plot, located in the temperate climate zone, was composed of two main plots that were NT and CT, and were divided into four plots, respectively, in accordance with types of fertilizers (chemical fertilizer, liquid pig manure, hairy vetch and non-fertilizer). Among all the treatments, $N_2O$ emission was the highest in August and the lowest in June. When $N_2O$ emissions were evaluated during the growing season (June to September) in all fertilizer treatments, NT with hairy vetch treatment emitted the highest $N_2O$ emission in August, whereas, $N_2O$ emissions was the lowest in NT with non-fertilizer treatment in June, respectively (p = 0.05). Based on the cumulative amount of $N_2O$ emissions during the growing season of soybean, NT had lower $N_2O$ emission than CT by 0.01 - 0.02 kg $N_2O$, although NT had higher $N_2O$ emission than CT by 0.03 kg $N_2O$ in only the chemical fertilizer treatments. As a result, it seems that the applications of liquid pig manure and hairy vetch rather than chemical fertilizer could decrease the $N_2O$ emission in NT, compared to CT.

  • PDF

시설재배지에서 유기복합비료 시용량에 따른 상추 생육 및 토양화학성에 미치는 영향 (Effects of Application Amount of Organic Compound Fertilizer on Lettuce Growth and Soil Chemical properties under Plastic film house)

  • 김명숙;박성진;김성헌;황현영;심재홍;이윤혜
    • 유기물자원화
    • /
    • 제28권3호
    • /
    • pp.37-44
    • /
    • 2020
  • 국가정책사업인 유기질비료 지원사업은 1999년부터 시작되었고, 유기질비료의 과다 시용은 시설재배지의 양분집적을 초래했다. 시설상추 재배시 안정적인수량 확보와 과다 시비로 인한 환경오염을 예방하기 위해 유기복합비료의 적정 추천량 기준을 설정하고자 시험하였다. 유기복합비료의 무기질 질소 기비량의 대체비율은 토양검정 질소 기비량(8.6 kg 10a-1)을 기준으로 100%에서 작물수량이 높았다. 토양의 질산태질소와 전기전도도도 무기질비료 처리구보다 낮은 함량을 나타냈다. 또한, 기비량 100%를 유기복합비료로 대체한 경우에 질소이용율은 23%로 무기질비료 처리구와 유사하게 나타났다. 이러한 결과로부터 상추의 수량을 증가시키고 토양 중에 투입된 비료성분의 토양 잔류 정도를 최소화하는 관점에서는 유기복합비료를 무기질 질소 기비량의 100%를 대체하는 것이 타당하다고 판단된다.

돈분뇨 액비 시용이 벼 생육 및 침투수질에 미치는 영향 (Effect of Liquid Pig Manure on Growth of Rice and Infiltration Water Quality)

  • 박백균;이종식;조남준;정광용
    • 한국토양비료학회지
    • /
    • 제34권3호
    • /
    • pp.153-157
    • /
    • 2001
  • To evaluate the effect of liquid pig manure application, the growth and yield of rice and the quality of infiltration water were investigated with application of different amounts of liquid manure. At this study, liquid pig manure was treated with 100, 200, 300 and 400% of recommending nitrogen fertilizer level, respectively. Liquid manure with application rate more than 200% of recommending N fertilizer level (11kg) caused to increase of plant height and number of tiller at panicle formation stage, but it caused the plant disease and pest and plant lodging. In those treatment, number of panicles per hill and number of spikelets per panicle were increased, but yield of rice was less than chemical fertilizer treatment due to low rate of ripeness and 1,000 grain weight. $NO_3-N$ concentration in infiltration water sample collected at 90 cm of soil depth was increased with increasing application amount of liquid manure. With liquid manure application more than 200% of recommending N fertilizer level, it affected negatively on yield and environment such as groundwater quality.

  • PDF

Fertilizer Use Efficiency of Taro (Colocasia esculenta Schott) and Nutrient Composition of Taro Tuber by NPK Fertilization

  • Lee, Ye-Jin;Sung, Jwa-Kyung;Lee, Seul-Bi;Lim, Jung-Eun;Song, Yo-Sung;Lee, Deog-Bae
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.388-392
    • /
    • 2016
  • The objectives of fertilizer recommendation are to prevent the application of excessive fertilization and to produce target yields. Also, optimal fertilization is important because crop quality can be influenced by fertilization. In this study, yields and fertilizer use efficiency of Taro (Colocasia esculenta Schott) were evaluated in different level of NPK fertilization. N, P and K fertilizer application rates were 5 levels (0, 50, 100, 150, 200%) by practical fertilization ($N-P_2O_5-K_2O=180-100-150kg\;ha^{-1}$), respectively. In the N treatment, the yields of Taro tuber were about $33Mg\;ha^{-1}$ from 90 to $360kg\;ha^{-1}$ N fertilization. However, the ratio of tuber to total biomass decreased with increasing N fertilization rate. In the P and K treatments, yields of Taro tuber were the highest at $150kg\;ha^{-1}$ fertilization. Fertilizer use efficiency was decreased by increase of N and K fertilization. Crude protein of Taro tuber was the highest at practical fertilization. Sucrose content of tuber was influenced by phosphate application.

친환경 유기질 비료 시용이 참당귀의 생육과 수량에 미치는 영향 (Effects of Eco-Friendly Organic Fertilizer on Growth and Yield of Angelica gigas Nakai)

  • 김영국;안태진;여준환;허목;박영심;차선우;송범헌;이경아
    • 한국약용작물학회지
    • /
    • 제22권2호
    • /
    • pp.127-133
    • /
    • 2014
  • This experiment was carried out to investigate the effect of several organic compost on the growth and root yield of Angelica gigas Nakai with organic cultivation. After fertilizing the soil with organic fertilizer, the dry weight of liming fertilizer showed a slow change, while microorganism fertilizer decreased about 29% until 20 day after fertilizing. At 110 days after fertilizing, microorganism fertilizer decreased more than liming fertilizer. Liming fertilizer decomposed slowly, while microorganism fertilizer decomposed early on rapidly but gently after 20 days in decomposed rate of organic fertilizer. Dried root yields per 10a of A. gigas were not significance between 277.6kg in conventional fertilizer and 277.7kg, 280.5kg in N 1.5, N 2.0 times of microorganism fertilizer. Decursin and decursinol angelate contents in A. gigas were 9.08 ~ 9.07% from N 1.0 and N 1.5 times in liming fertilizer, and 7.94 ~ 8.12% from N 1.5 times and N 2.0 times in microorganism fertilizer, compared to 7.31% of conventional treatment.

Effect of Long Term Fertilization on Soil Carbon and Nitrogen Pools in Paddy Soil

  • Lee, Chang Hoon;Jung, Ki Youl;Kang, Seong Soo;Kim, Myung Sook;Kim, Yoo Hak;Kim, Pil Joo
    • 한국토양비료학회지
    • /
    • 제46권3호
    • /
    • pp.216-222
    • /
    • 2013
  • Fertilizer management has the potential to promote the storage of carbon and nitrogen in agricultural soils and thus may contribute to crop sustainability and mitigation of global warming. In this study, the effects of fertilizer practices [no fertilizer (Control), chemical fertilizer (NPK), Compost, and chemical fertilizer plus compost] on soil total carbon (TC) and total nitrogen (TN) contents in inner soil profiles of paddy soil at 0-60 cm depth were examined by using long-term field experimental site at $42^{nd}$ years after installation. TC and TN concentrations of the treatments which included N input (NPK, Compost, NPK+Compost) in plow layer (0-15 cm) ranged from 19.0 to 26.4 g $kg^{-1}$ and 2.15 to 2.53 g $kg^{-1}$, respectively. Compared with control treatment, SOC (soil organic C) and TN concentrations were increased by 24.1 and 31.0%, 57.6 and 49.7%, and 72.2 and 54.5% for NPK, Compost, and NPK+Compost, respectively. However, long term fertilization significantly influenced TC concentration and pools to 30 cm depth. TC and TN pools for NPK, Compost, NPK+Compost in 0-30 cm depth ranged from 44.8 to 56.8 Mg $ha^{-1}$ and 5.78 to 6.49 Mg $ha^{-1}$, respectively. TC and TN pools were greater by 10.5 and 21.4%, 30.3 and 29.6%, and 39.9 and 36.3% in N input treatments (NPK, Compost, NPK+Compost) than in control treatment. These resulted from the formation and stability of aggregate in paddy soil with continuous mono rice cultivation. Therefore, fertilization practice could contribute to the storage of C and N in paddy soil, especially, organic amendments with chemical fertilizers may be alternative practices to sequester carbon and nitrogen in agricultural soil.

Effect of Mixed Treatment of Urea Fertilizer and Zeolite on Nitrous Oxide and Ammonia Emission in Upland Soil

  • Park, Jun-Hong;Park, Sang-Jo;Seo, Young-Jin;Kwon, Oh-Heun;Choi, Seong-Yong;Park, So-Deuk;Kim, Jang-Eok
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.368-373
    • /
    • 2014
  • Ammonia loss from urea significantly hinders efficient use of urea in agriculture. The level of nitrous oxide ($N_2O$) a long-lived greenhouse gas in atmosphere has increased mainly due to anthropogenic source, especially application of nitrogen fertilizers. There are reports in the literature showing that the addition of zeolite to N sources can improve the nitrogen use efficiency. This study was conducted to evaluate nitrous oxide ($N_2O$) and ammonia ($NH_3$) emission by mixed treatment of urea and zeolite in upland crop field. Urea fertilizer and zeolite were applied at different rates to study their effect on $N_2O$ emission during red pepper cultivation in upland soils. The $N_2O$ gas was collected by static closed chamber method and measured by gas chromatography. Ammonia concentration was analyzed by closed-dynamic air flow system method. The total $N_2O$ flux increased in proportion to the level of N application. Emission of $N_2O$ from the field increased from the plots applied with urea-zeolite mixture compared to urea alone. But urea-zeolite mixture treatment reduced about 30% of $NH_3$-N volatilization amounts. These results showed that the application of urea and zeolite mixture had a positive influence on reduction of $NH_3$ volatilization, but led to the increase in $N_2O$ emission in upland soils.

콩과목초 잔주의 사일리지용 옥수수에 대한 질소 공급효과 (A Comparison of Legume Residues as a Nitrogen Source for Silage Corn)

  • 김동암;김종덕;이광녕;신동은;정재록;김원호
    • 한국초지조사료학회지
    • /
    • 제17권3호
    • /
    • pp.293-304
    • /
    • 1997
  • A field experiment was conducted at the forage experimental plots, Seoul National University, Suweon h m 1995 to 1996 to determine the effect of legume residues as a N source and N fertilizer on corn (Zea mays L.) silage yield, N uptake, and availability of inorganic N in the soil. Corn was grown following (i) red clover (Trifolium pratense L.), (ii) crimson clover (Trifolium incarnatum L.), (iii) alfalfa (Medicago sativa L.) and (iv) winter fallow. The plots were split into two rates of fertilizer N (0 and 90kg Nlha) in a split-plot experimental plan. Compared with fallow treatment, legumes depleted soil water in the surface 15cm at corn planting by 17 to 26%. As a result, corn emergence was markedly delayed with legume residues by 8 to 11 days. Corn silage DM yield was significantly reduced in the presence of legume residues by 2.0 to 3.4 and 1.5 to 2.5 tonlha compared with winter fallow treatment at 0 and 90kg fertilizer Nlha, respectively, but no significant difference in the corn DM yield was found between legume residue treatments. There was an overall tendency for increased corn yields with 90kg fertilizer Nlha compared to Okg fertilizer Nlha, although not all yield increases were significantly greater. The corn yield response to applied N suggests that a source of N from legume residues was not sufficient for a succeeding corn crop. There was significantly more N (P

  • PDF