• Title/Summary/Keyword: N concentration

Search Result 8,335, Processing Time 0.038 seconds

Methyl Linoleate Oxidation via Electron Transfer in Competition with $^1O_2$ Formation Photosensitized N-Acetyl-L-Tryptophan 3-Methyl Indole

  • Yoon, Min-Joong;Song, Moon-Young;Cho, Dae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.5
    • /
    • pp.291-295
    • /
    • 1985
  • The efficiency of photosensitization of methyl linoleate (ML) oxidation by N-acetyl-L-trypophan(NAT) and 3-methyl indole(scatole) was markedly enhanced by increased concentration of ML in ethanol solution. The fluorescence intensities of sensitizers were observed to be quenched by ML, indicating that ML interacts with the indole excited singlet state. The inhibition of photosensitization by azide demonstrated a possible role of singlet oxygen in the photosensitization. The steady state kinetic treatment of azide inhibition of photosensitization was expected to show linear increase of reciprocal yield of ML oxidation product vs. reciprocal ML concentration at constant azide concentration, but the actual slope was nonlinear. This indicates another competing reaction involved in the photosensitization, As a possible competing reaction, electron transfer from ML to the excited sensitizer was proposed, since the measured fluorescence quenching rate constant closely resembled electron transfer rate constant determined from ML concentration dependence of oxidation product formation.

Simultaneous Catalytic Reduction of NO and N2O over Pd-Rh Supported Mixed Metal Oxide Honeycomb Catalysts - Use of H2 or CO as a Reductant (혼합금속산화물에 담지된 Pd-Rh의 허니컴 촉매에서 NO와 N2O의 동시 환원 - H2 또는 CO 환원제의 사용)

  • Lee, Seung Jae;Moon, Seung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.96-104
    • /
    • 2009
  • In order to lower a reaction temperature with high conversions for simultaneous catalytic reduction of NO and $N_2O$ over Pd-Rh supported mixed metal oxide honeycomb catalysts, $H_2$ or CO was utilized as a reductant. When using the reductants, the effects of reaction conditions were examined in NO and $N_2O$ conversions, where reaction temperatures, concentrations of the reductants and oxygen and the concentration ratio of $N_2O$ to NO were varied. In using $H_2$ reductant, larger than 50% of NO and $N_2O$ conversions was observed at the temperatures below $200^{\circ}C$ in absence of $O_2$. In using CO reductant, NO and $N_2O$ conversions increased from the temperatures higher than $200^{\circ}C$ and $300^{\circ}C$, respectively. However, in use of both reductants, NO and $N_2O$ conversions decreased with increasing oxygen concentration. As a result, $H_2$ reductant could reduce simultaneously NO and $N_2O$ at relatively lower reaction temperature than CO. Also, NO and $N_2O$ conversions were less influenced by using $H_2$ reductant than CO one. Concentration ratio between NO and $N_2O$ did not affect their conversions regardless the type of reductants. Pretreatment of the catalyst in $H_2$ was more effective in simultaneous reduction of NO and $N_2O$ at low reaction temperature than that in $O_2$.

Effect of the Corrosive Solution Conditions and Scan Rate to the Electrochemical Corrosion on the AISI 304 Stainless Steel (부식액의 조건 및 주사 속도가 AISI 304 스테인리스강의 전기화학적 부식에 미치는 영향)

  • 나은영;백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.535-541
    • /
    • 1997
  • The effect of concentration of each solution( HCI, $H_2SO_4$ and $HNO_3$), scan rate and polished surface condition on the corrosion of AISI 304 Stainless Steel were investigated, utilizing the Method ASTM G5 - 87. It can be concluded that: 1) For the same concentration(i.e. 1N) of each solution the corrosion rate is the highest in HCI and lowest in $HNO_3$. Also, the difference of values of $i_{cirt}$ generated for each solution is significant. 2) As the concentration of the solution $H_2SO_4$ is increased (O.5N, 1N, 2N) the values of $E_{cor}$ $i_{crit}$ and $i_{p}$ are increased. 3) In case of existence of SCN ion of O.OlN, the values of iCTIt and ip generated are approximately 100 times and 1.4 times higher respectively, than in the case of non - existence of $SCN^{-}$. However the existence of $SCN^{-}$ doesn't affect the value of $E_{cor}$ and $E_{p}$. 4) The values of $i_{crit}$ and $i_{p}$ are increased due to the increase of scan rate. But the values of $E_{cor}$ and $E_{p}$ do not depend on the scan rate. 5) The $i_{p}$ value depends greatly on oxygen in the solution, but the changes in values of $E_{cor}$ $i_{crit}$ and $E_{b}$ due to the oxygen are insignificant. 6) If a component is polished using #400, #600 and #800 wet polish paper, the effect of surface condition on variations of values of $i_{crit}$ and $i_{p}$ is slightly significant.

  • PDF

Controlling Bacterial Regrowth Potential by the Limitation of Nutrients in Drinking Water (영양원의 제한에 의한 수돗물에서의 세균재증식능 억제)

  • Oh, Jung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.431-437
    • /
    • 2005
  • In this study, the profiles of the bacterial regrowth of indigenous bacteria in tap water and Pseudomonas fluorescence P17 were investigated for cases when carbon (glucose), and/or nitrogen ($NO_3^-$-N), and/or phosphorus ($PO_4^{3-}$-P) were added below sufficient nutrient concentration (SNC) and when carbon sources (glucose and acetate) and nitrogen sources ($NH_4^+$-N and $NO_3^-$-N) were added together. The bacterial regrowth was decreased with limitation of nutrients, and were lowered relatively in the sample, which plural nutrients were limited. In addition, phosphate might be the effective nutrient to control the bacterial regrowth in drinking water because the bacterial regrowth was significantly decreased by the limitation of phosphate. In contrast, the bacterial regrowth was retarded with increasing the concentration of $NO_3^-$-N. For simultaneously adding carbon(glucose or acetate) and nitrogen sources ($NH_4^+$-N and $NO_3^-$-N), the regrowth counts appeared highly in the condition, for both glucose and acetate. And, the regrowth was increased with increasing $NH_4^+$-N concentration as a nitrogen source.

Penetration behavior by carbon potential in laser-carburized TiZrN coatings (TiZrN 코팅의 레이저 침탄에서 탄소 포텐셜에 따른 침입 거동)

  • Lee, Byunghyun;Kim, Taewoo;Hong, Eunpyo;Kim, Seonghoon;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.282-286
    • /
    • 2021
  • Penetration depth and compressive residual stress of laser-carburized TiZrN coating by thickness of carbon paste were investigated in terms of carbon potential. The carbon paste was covered with a thickness of 1.1 mm using screen printing, and applied to a thickness of 0.4 mm using spin coating, and laser carburization was performed under the same conditions. As the thickness of carbon paste increased, the diffraction pattern of the laser-carburized TiZrN coating shifted to a lower angle, indicating solid solution strengthening and lattice distortion. For microstructure analysis using TEM, the defects and carbon concentration of the laser-carburized TiZrN coating increased as the carbon paste was thicker. It indicated that the variation of the carbon potential corresponds to the change in the paste thickness. In XPS depth profile analysis, high concentration of carbon and formation of carbide were observed in laser-carburized TiZrN coating with thick carbon paste. It revealed that the carbon concentration on the surface and carbon potential were changed by the thickness control of carbon paste. The compressive residual stress increased from 3.67 GPa to 4.58 GPa by the variation of carbon concentration.

Recycled packed-bed reactor for efficient denitrification (재순환 충전탑식 반응기를 이용한 효율적 탈질)

  • 김성홍;송승훈;박재연;유영제
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.154-158
    • /
    • 2004
  • Recycled packed-bed reactor emploring immobilized microorganism was suggested in this paper for efficient denitrification. In the batch reactor, the effects of initial oxidation-reduction potential and nitrate concentration on denitrification were investigated. As the initial oxidation-reduction potential was decresed to -70 mV from +40 mV, the removal rate of nitrate was increased to 3.33 from 1.25 m9 NO$_3$$\^$-/-N/min under the experimental conditions. As the initial nitrate-N concentraion was increased to 200 mg/l, the removal rate of nitrate was proportional to the concentration of nitrate. When the concentration of nitrate-N was 400 mg/min, nitrite was detected, and when the initial nitrate-N concentration was reached at 1,000 mg/l, it took longer time for the complete nitrate removal. In order to decrease the initial oxidation-reduction potential and the nitrate-N concentration in the feed stream, the effluent was recycled to the influent stream in the packed-bed reactor. In the case of recycling, the initial oxidation-reduction potential was decreased to 30 mV from 150 mV, and the initial nitrate concentration could be decreased to 85 from 120 mg NO$_3$$\^$-/-N/l. As the result of recycling, the removal rate of nitrate was increased to 91.7% from 49.2%.

Bioconcentration of IBP, Methidathion and Piperophos in Brachydanio rerio(zebrafish) (Brachydanio rerio(zebrafish)를 이용한 IBP, methidathion 및 piperophos의 생물농축성)

  • 하영득;민경진;이승곤
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.108-118
    • /
    • 2001
  • This study was performed to investigate the bioconcentration of IBP, methidathion and piperophos. The BCFs(bioconcentration factor), depuration rate constants for three pesticides in zebrafish(Brachydanio rerio) were measured by OECD guideline 305. The concentration of test pesicides were one-hundredth and one-thousandth concentration of 96-hrs L $C_{50}$ in accordance with OECD guideline 305. The results obtained are summarized as follows: The average BCF values of IBP were 5.31(n=4) and 7.30(n=4) at one-hundredth and one-thousandth concentration of 96-hrs L $C_{50}$ . The average BCF values of methidathion were 8.72(n=4) and 11.25(n=4), the average BCF values of piperophos were 34.30(n=4) and 42.60(n=4). Depuration rate constants of IBP were 0.09( $h^{-1}$ ) and 0.08( $h^{-1}$ ), half-life of IBP were 7.70 and 8.66 at each tested concentration. The concentrations of IBP in zebrafish at low and high concentrations rapidly decreased after 12(0.243$\mu\textrm{g}$/g) and 12 hours(0.040$\mu\textrm{g}$/g). Depuration rate constants of methidathion were 0.40( $h^{-1}$ ), half-life of methidathion were 1.73 at one-hunderdth and of 96-hrs L $C_{50}$ , repectively. The concentrations of methidathion in zebrafish at high concentrations rapidly decreased after 6 hours(0.18 $\mu\textrm{g}$/g). Depuration rate constant of low concentration was no measured because methidathion in zebrafish was depurated in 6 hours. Depuration rate constants of piperophos sere 0.15( $h^{-1}$ ) and 0.44( $h^{-1}$ ), half-life of piperophos were 4.62 and 1.58 at each tested concentration. The concentrations of piperophos in zebrafish at los and high concentrations rapidly decreased after 12(0.26$\mu\textrm{g}$/g) and 6 hours(0.015 $\mu\textrm{g}$/g). It was suggested that high BCF of piperophos was due to high Kow(octanol-water partition coefficient). The possibility of bioconcenration was not likely to be high because of its $K_{DEP}$(depuration rate constant) in the evniroment. It was suggested that low BCF of methidathion showed lowest Kow as well as the most rapid $K_{DEP}$. Therefore, the possibility of bioconcentration was not occured in the enviroment. It was suggested that the BCF dtermined for IBP was lower than that of other pesticides due to high Sw(water solubility), show $K_{DEP}$. Therefore, IBP revealed little bioconcentration effect on in aquatic ecosystem.ystem.

  • PDF

Poly(vinyl alcohol)의 합성과 유변학적 성질

  • Lee, Jeong Kyung;Lee, Hyang Aee;Kim, Keyn Gyi
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.6
    • /
    • pp.555-561
    • /
    • 2001
  • Vinyl acetate usually used in PVA resin preparation was converted to PVAc by bulk polymerization using AIBN as a initiator and PVA was synthesized by changing the concentration of NaOH added for saponification subsequently. As a result of estimating molecular weight using GPC, molecular weight increased as the NaOH concentration increased to 2.5 N, 5.0 N, 7.5 N and 10.0 N and polydispersity had similar values of 2.1~2.3, however, showed slightly decreasing tendency. In addition, PVA saponificated by 10.0 N-NaOH showed high syndiotacticity in observation of tacticity using NMR spectroscopy. From this fact, the degree of tacticity was predicted to be high and it was in good agreement with the tendency of polydispersity by GPC. Also, from the result of FT-IR spectroscopy, it might be known that hydrolysis was more promoted in the PVA with 10.0 N-NaOH than other NaOH concentration. Intrinsic viscosity measured using Ubbelohde viscometer, which increased as the concentration of NaOH added for saponification increased. The change of shear strength with the change of shear rate was investigated using Brookfield viscometer, in consequence, viscosity of PVA synthesized decreased as shear rate increased. PVA solution confirmed to show the shear thining behavior by Casson plot and PVA with 10.0 N-NaOH had the largest yield value. DSC measurement was performed to know the thermal properties of PVA. Tp had nearly constant value of 214$^{\circ}C$ in all cases except for adding 2.5 N-NaOH and $\Delta$H was increased as the concentration of NaOH increased. From this properties, it was concluded that the degree of hydrogen bonding was proportional to the added concentration of NaOH and the increase of the degree of hydrogen bonding and hydrophobic interaction could affect the rheological and thermal properties of title compound.

  • PDF

Effects of elevated CO2 concentration and increased temperature on leaf quality responses of rare and endangered plants

  • Jeong, Heon-Mo;Kim, Hae-Ran;Hong, Seungbum;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Background: In the study, the effects of elevated $CO_2$ and temperature on the nitrogen content, carbon content, and C:N ratio of seven rare and endangered species (Quercus gilva, Hibiscus hambo, Paliurus ramosissimus, Cicuta virosa, Bupleurum latissimum, Viola raddeana, and Iris dichotoma) were examined under control (ambient $CO_2$ + ambient temperature) and treatment (elevated $CO_2$ + elevated temperature) for 3 years (May 2008 and June 2011). Results: Elevated $CO_2$ concentration and temperature result in a decline in leaf nitrogen content for three woody species in May 2009 and June 2011, while four herb species showed different responses to each other. The nitrogen content of B. latissimum and I. dichotoma decreased under treatment in either 2009 and 2011. The leaf nitrogen content of C. virosa and V. raddeana was not significantly affected by elevated $CO_2$ and temperature in 2009, but that of C. virosa increased and that V. raddeana decreased under the treatment in 2011. In 2009, it was found that there was no difference in carbon content in the leaves of the six species except for that of P. ramosissimus. On the other hand, while there was no difference in carbon content in the leaves of Q. gilva in the control and treatment in 2011, carbon content in the leaves of the remaining six species increased due to the rise of $CO_2$ concentration and temperature. The C:N ratio in the leaf of C. virosa grown in the treatment was lower in both 2009 and 2011 than that in the control. The C:N ratio in the leaf of V. raddeana decreased by 16.4% from the previous year, but increased by 28.9% in 2011. For the other five species, C:N ratios increased both in 2009 and 2011. In 2009 and 2011, chlorophyll contents in the leaves of Q. gilva and H. hamabo were higher in the treatment than those in the control. In the case of P. ramosissimus, the ratio was higher in the treatment than that in the control in 2009, but in 2011, the result was the opposite. Among four herb species, the chlorophyll contents in the leaves of C. virosa, V. raddeana, and I. dichotoma did not show any difference between gradients in 2009, but decreased due to the rise of $CO_2$ concentration and temperature in 2011. Leaf nitrogen and carbon contents, C:N ratio, and chlorophyll contents in the leaves of seven rare and endangered species of plant were found to be influenced by the rise and duration of $CO_2$ concentration and temperature, species, and interaction among those factors. Conclusions: The findings above seem to show that long-term rise of $CO_2$ concentration, and temperature causes changes in physiological responses of rare and endangered species of plant and the responses may be species-specific. In particular, woody species seem to be more sensitive to the rise of $CO_2$ concentration and temperature than herb species.

A Study on Mensurement of NO Concentrations in Laminar Non-premixed H2/N2 Flame Using LIF (레이저 유도 형광법(LIF)을 이용한 층류 비예혼합 수소/질소 화염에서의 NO 농도 측정에 관한 연구)

  • Jin, Seong Ho;Kim, Sung Wook;Park, Kyoung Suk;Kim, Gyung Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.279-286
    • /
    • 2002
  • In this study, quantitative nitric oxide concentration distributions are investigated in the laminar non-premixed $H_2/N_2$ flames by laser-induced fluorescence (LIF). The measurements are taken in flames for different $N_2$ dilution ratios varying from 20~80%, and fuel flow rate is fixed as Islpm. The NO A-X (0,0) vibrational band around 226 nm is excited using a XeCl excimer-pumped dye laser. We applied same excitation line used in $CH_4$, premixed flame. Overall, NO concentration was rapidly decreased with Na addition and we could not measure the concentration any longer for $N_2$ dilution above 80%.