Background and Objectives: Myocardial ischemia and reperfusion injury (MIRI) has high morbidity and mortality worldwide. We aimed to explore the role of long noncoding RNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) in cardiomyocyte pyroptosis. Methods: Hypoxia/reoxygenation (H/R) injury was constructed in human cardiomyocyte (HCM). The level of LOXL1-AS1, miR-761, phosphatase and tensin homolog (PTEN) and pyroptosis-related proteins was monitored by quantitative real-time polymerase chain reaction or western blot. Flow cytometry examined the pyroptosis level. Lactate dehydrogenase (LDH), creatine kinase-MB and cardiac troponin I levels were detected by test kits. Enzyme-linked immunosorbent assay measured the release of inflammatory cytokines. Dual-luciferase assay validated the binding relationship among LOXL1-AS1, miR-761, and PTEN. Finally, ischemia/reperfusion (I/R) animal model was constructed. Hematoxylin and eosin staining assessed morphological changes of myocardial tissue. NOD-like receptor pyrin domain-containing protein 3 (NLRP3) and casepase-1 expression was determined by immunohistochemistry. Results: After H/R treatment, LOXL1-AS1 and PTEN were highly expressed but miR-761 level was suppressed. LOXL1-AS1 inhibition or miR-761 overexpression increased cell viability, blocked the release of LDH and inflammatory cytokines (interleukin [IL]-1β, IL-18), inhibited pyroptosis level, and downregulated pyroptosis-related proteins (ASC, cleaved caspase-1, gasdermin D-N, NLRP3, IL-1β, and IL-18) levels in HCMs. LOXL1-AS1 sponged miR-761 to up-regulate PTEN. Knockdown of miR-761 reversed the effect of LOXL1-AS1 down regulation on H/R induced HCM pyroptosis. LOXL1-AS1 aggravated the MIRI by regulating miR-761/PTEN axis in vivo. Conclusions: LOXL1-AS1 targeted miR-761 to regulate PTEN expression, then enhance cardiomyocyte pyroptosis, providing a new alternative target for the treatment of MIRI.
Myocardial ischemia-reperfusion injury is known to be mediated by reactive oxygen species. The myocardial cell is equipped with endogenous antioxidant defensive system which can be adaptively stimulated by various oxidative stress. It is postulated that an increased oxygen partial pressure induced by hyperbaric oxygenation impose an oxidative stress on the cells, resulting alterations in the endogenous antioxidant system. In this study we investigated the effect of hyperbaric oxygenation on the activities of myocardial antioxidant enzymes and observed whether the hyperbaric oxygenation could protect the ischemia-reperfusion injury of heart. Rats or rabbits were pretreated with hyperbaric $oxygenation(2{\sim}3\;atm\;O_2/1{\sim}3\;hrs/1{\sim}10\;days)$. The changes in activities of major antioxidant enzymes(superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phasphate dehydrogenase), functional recovery and infarct size were observed in the experimentally induced ischemia-reperfused hearts. In the hearts isolated from rats pretreated with $2\;atm\;O_2/1{\sim}2\;hrs$ for 5 days, the functional recovery after reperfusion(20 min) following global ischemia(25 min) was significantly increased without any observable oxygen toxicity. Lactate dehydrogenase release was also significantly reduced in this hyperbaric oxygenated rat hearts. In in vivo regional ischemia(30 min) model of rabbit hearts, pretreatrment with $2\;atm\;O_2/1\;hr$ for 5 days significantly limited the infarct size. Among the myocardial antioxidant enzymes of rat hearts pretreated with the hyperbaric oxygenation, the activities of catalase, superoxide dismutase and glucose-6-phosphatase dehydrogenase were increased, while those of glutathione peroxidase and reductase were not changed. There were lethal cases in the groups of rats exposed to 3 atm $3\;atm\;O_2/2{\sim}3\;hrs$ for 5 days. A lipid-peroxidation product, rnnlondialdehyde was increased in brains and livers of the rats exposed to$2\;atm\;O_2/2{\sim}3\;hrs/5\;days\;and\;3\;atm\;O_2/1\;hr/5days$. The present results suggest that the pretreatment of hyperbaric oxygenation can protect the post-ischemic rererfused hearts in association with a stimulation of the activities of myocardial antioxidant defensive enzymes, and that the hyperbaric oxygenation of $2\;atm\;O_2/1\;hr$for 5 days would be a safe condition which does not produce any oxygen toxicity.
Background and Objectives: Myocardial ischemia-reperfusion injury (MIRI) refers to the damage of cardiac function caused by restoration of blood flow perfusion in ischemic myocardium. However, long non-coding RNA prostate androgen regulated transcript 1 (PART1)'s role in MIRI remain unclear. Methods: Immunofluorescence detected LC3 expression. Intermolecular relationships were verified by dual luciferase reporter assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry and transferase-mediated dUTP nick-end labeling (TUNEL) assays analyzed cell viability and apoptosis. The release of lactate dehydrogenase was tested via enzyme-linked immunosorbent assay (ELISA). Left anterior descending coronary artery surgery induced a MIRI mouse model. Infarct area was detected by 2,3,5-triphenyltetrazolium chloride staining. Hematoxylin and eosin staining examined myocardial injury. ELISA evaluated myocardial marker (creatine kinase MB) level. Results: PART1 was decreased in hypoxia/reoxygenation (H/R) induced AC16 cells and MIRI mice. PART1 upregulation attenuated the increased levels of Bax, beclin-1 and the ratio of LC3II/I, and enhanced the decrease of Bcl-2 and p62 expression in H/R-treated cells. PART1 upregulation alleviated H/R-triggered autophagy and apoptosis via miR-302a-3p. Mechanically, PART1 targeted miR-302a-3p to upregulate transcription factor activating enhancer-binding protein 2C (TFAP2C). TFAP2C silencing reversed the protected effects of miR-302a-3p inhibitor on H/R treated AC16 cells. We further established TFAP2C combined to dual-specificity phosphatase 5 (DUSP5) promoter and activated DUSP5. TFAP2C upregulation suppressed H/R-stimulated autophagy and apoptosis through upregulating DUSP5. Overexpressed PART1 reduced myocardial infarction area and attenuated MIRI in mice. Conclusion: PART1 improved the autophagy and apoptosis in H/R-exposed AC16 cells through miR-302a-3p/TFAP2C/DUSP5 axis, which might provide novel targets for MIRI treatment.
Calcium channel blockers may prevent myocardial injury during cardioplegia and reperfusion. This study was done to evaluate the effects of diltiazem cardioplegia on myocardial protection during ischemic arrest and recovery of myocardial function after reperfusion. Four formulations of crystalloid cardioplegic solutions, GIK solution[group I, n=12], diltiazem[lug/ml GIK] in GIK solution[group II, n=7], ],diltiazem[2ug/ml GIK] in GIK solution[group III, n=6] and diltiazem[4ug/ml GIK] in GIK solution[group IV, n=6] were compared in isolated working rat heart subjected to a long period [2 hours] of hypothermic arrest with multi-dose infusion. Diltiazem cardioplegia[group II, III and IV]was found to be superior in nearly all aspects. Diltiazem cardioplegia showed faster recovery of regular rhythm and lower incidence of ventricular fibrillation than group I did. In comparing mechanical function in all experimental hearts, the mean postischemic recoveries of aortic flow, cardiac output, peak aortic pressure, stroke volume and stroke work[expressed as a percentage of its preischemic control] were significantly greater in group II, III and IV[diltiazem cardioplegia] than in group I. The infused amount of cardioplegic solution was more increased by the addition of diltiazem to GI K solution. [p < 0.01] Creatine kinase leakage tended to be lower in hearts receiving diltiazem cardioplegia, especially in group III and IV[p<0.05] than in those receiving GIK solution only[group I]. Diltiazem cardioplegia results in the increased flow of cardioplegic solution and the decreased ischemic injury of myocardium during ischemic arrest and the improved recovery of myocardial function after reperfusion, and a dose-response relation must be established before clinical use.
Myocardial infarction is one of the leading causes of mortality globally. Currently, the pleiotropic inflammatory cytokine interleukin-6 (IL-6) is considered to be intimately related to the severity of myocardial injury during myocardial infarction. Interventions targeting IL-6 are a promising therapeutic option for myocardial infarction, but the underlying molecular mechanisms are not well understood. Here, we report the novel role of IL-6 in regulating adverse cardiac remodeling mediated by fibroblasts in a mouse model of myocardial infarction. It was found that the elevated expression of IL-6 in myocardium and cardiac fibroblasts was observed after myocardial infarction. Further, fibroblast-specific knockdown of Il6 significantly attenuated cardiac fibrosis and adverse cardiac remodeling and preserved cardiac function induced by myocardial infarction. Mechanistically, the role of Il6 contributing to cardiac fibrosis depends on signal transduction and activation of transcription (STAT)3 signaling activation. Additionally, Stat3 binds to the Il11 promoter region and contributes to the increased expression of Il11, which exacerbates cardiac fibrosis. In conclusion, these results suggest a novel role for IL-6 derived from fibroblasts in mediating Stat3 activation and substantially augmented Il11 expression in promoting cardiac fibrosis, highlighting its potential as a therapeutic target for cardiac fibrosis.
Pyroptosis is an inflammatory form of programmed cell death that is linked with invading intracellular pathogens. Cardiac pyroptosis has a significant role in coronary microembolization (CME), thus causing myocardial injury. Tanshinone IIA (Tan IIA) has powerful cardioprotective effects. Hence, this study aimed to identify the effect of Tan IIA on CME and its underlying mechanism. Forty Sprague-Dawley (SD) rats were randomly grouped into sham, CME, CME + low-dose Tan IIA, and CME + high-dose Tan IIA groups. Except for the sham group, polyethylene microspheres (42 ㎛) were injected to establish the CME model. The Tan-L and Tan-H groups received intraperitoneal Tan IIA for 7 days before CME. After CME, cardiac function, myocardial histopathology, and serum myocardial injury markers were assessed. The expression of pyroptosis-associated molecules and TLR4/MyD88/NF-κB/NLRP3 cascade was evaluated by qRT-PCR, Western blotting, ELISA, and IHC. Relative to the sham group, CME group's cardiac functions were significantly reduced, with a high level of serum myocardial injury markers, and microinfarct area. Also, the levels of caspase-1 p20, GSDMD-N, IL-18, IL-1β, TLR4, MyD88, p-NF-κB p65, NLRP3, and ASC expression were increased. Relative to the CME group, the Tan-H and Tan-L groups had considerably improved cardiac functions, with a considerably low level of serum myocardial injury markers and microinfarct area. Tan IIA can reduce the levels of pyroptosis-associated mRNA and protein, which may be caused by inhibiting TLR4/MyD88/NF-κB/NLRP3 cascade. In conclusion, Tanshinone IIA can suppress cardiomyocyte pyroptosis probably through modulating the TLR4/MyD88/NF-κB/NLRP3 cascade, lowering cardiac dysfunction, and myocardial damage.
Background and Objectives: Circular RNAs were known to play vital role in myocardial ischemia reperfusion injury (MIRI), while the role of CircZNF609 in MIRI remains unclear. This study was aimed to investigate the function of CircZNF609 in MIRI. Methods: Hypoxia/reoxygenation (H/R) model was established to mimic MIRI in vitro. Quantitative polymerase chain reaction was performed to evaluate gene transcripts. Cellular localization of CircZNF609 and miR-214-3p were visualized by fluorescence in situ hybridization. Cell proliferation was determined by CCK-8. TUNEL assay and flow cytometry were applied to detect apoptosis. Lactate dehydrogenase was determined by commercial kit. ROS was detected by DCFH-DA probe. Direct interaction of indicated molecules was determined by RIP and dual luciferase assays. Western blot was used to quantify protein levels. In vivo model was established to further test the function of CircZNF609 in MIRI. Results: CircZNF609 was upregulated in H/R model. Inhibition of CircZNF609 alleviated H/R induced apoptosis, ROS generation, restored cell proliferation in cardiomyocytes and human umbilical vein endothelial cells. Mechanically, CircZNF609 directly sponged miR-214-3p to release PTGS2 expression. Functional rescue experiments showed that miR-214-3p/PTGS2 axis was involved in the function of circZNG609 in H/R model. Furthermore, data in mouse model revealed that knockdown of CircZNF609 significantly reduced the area of myocardial infarction and decreased myocardial cell apoptosis. Conclusions: CircZNF609 aggravated the progression of MIRI via targeting miR-214-3p/PTGS2 axis, which suggested CircZNF609 might act as a vital modulator in MIRI.
Background: Ginsenoside Rb1, a bioactive component isolated from the Panax ginseng, acts as a remedy to prevent myocardial injury. However, it is obscure whether the cardioprotective functions of Rb1 are related to the regulation of endogenous metabolites, and its potential molecular mechanism still needs further clarification, especially from a comprehensive metabolomics profiling perspective. Methods: The mice model of acute myocardial ischemia (AMI) and oxygen glucose deprivation (OGD)-induced cardiomyocytes injury were applied to explore the protective effect and mechanism of Rb1. Meanwhile, the comprehensive metabolomics profiling was conducted by high-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (HPLC-Q/TOF-MS) and a tandem liquid chromatography and mass spectrometry (LC-MS). Results: Rb1 treatment profoundly reduced the infarct size and attenuated myocardial injury. The metabolic network map of 65 differential endogenous metabolites was constructed and provided a new inspiration for the treatment of AMI by Rb1, which was mainly associated with mitophagy. In vivo and in vitro experiments, Rb1 was found to improve mitochondrial morphology, mitochondrial function and promote mitophagy. Interestingly, the mitophagy inhibitor partly attenuated the cardioprotective effect of Rb1. Additionally, Rb1 markedly facilitated the phosphorylation of AMP-activated protein kinase α (AMPKα), and AMPK inhibition partially weakened the role of Rb1 in promoting mitophagy. Conclusions: Ginsenoside Rb1 protects acute myocardial ischemia injury through promoting mitophagy via AMPKα phosphorylation, which might lay the foundation for the further application of Rb1 in cardiovascular diseases.
Objective: To determine whether T1 mapping could monitor the dynamic changes of injury in myocardial infarction (MI) and be histologically validated. Materials and Methods: In 22 pigs, MI was induced by ligating the left anterior descending artery and they underwent serial cardiovascular magnetic resonance examinations with modified Look-Locker inversion T1 mapping and extracellular volume (ECV) computation in acute (within 24 hours, n = 22), subacute (7 days, n = 13), and chronic (3 months, n = 7) phases of MI. Masson's trichrome staining was performed for histological ECV calculation. Myocardial native T1 and ECV were obtained by region of interest measurement in infarcted, peri-infarct, and remote myocardium. Results: Native T1 and ECV in peri-infarct myocardium differed from remote myocardium in acute (1181 ± 62 ms vs. 1113 ± 64 ms, p = 0.002; 24 ± 4% vs. 19 ± 4%, p = 0.031) and subacute phases (1264 ± 41 ms vs. 1171 ± 56 ms, p < 0.001; 27 ± 4% vs. 22 ± 2%, p = 0.009) but not in chronic phase (1157 ± 57 ms vs. 1120 ± 54 ms, p = 0.934; 23 ± 2% vs. 20 ± 1%, p = 0.109). From acute to chronic MI, infarcted native T1 peaked in subacute phase (1275 ± 63 ms vs. 1637 ± 123 ms vs. 1471 ± 98 ms, p < 0.001), while ECV progressively increased with time (35 ± 7% vs. 46 ± 6% vs. 52 ± 4%, p < 0.001). Native T1 correlated well with histological findings (R2 = 0.65 to 0.89, all p < 0.001) so did ECV (R2 = 0.73 to 0.94, all p < 0.001). Conclusion: T1 mapping allows the quantitative assessment of injury in MI and the noninvasive monitoring of tissue injury evolution, which correlates well with histological findings.
흉부 외상은 단순 부정맥에서 심근 파열 등 심장에 다양한 합병증을 일으킬 수 있다. 그중 관상동맥 손상은 매우 드문 합병증이고 특히 좌측 관상 동맥의 동맥류는 우측에 비해서 발생빈도가 작은 것으로 되어있다. 흉부 둔상 후 관상 동맥 내벽의 동맥류 형성, 박리, 열상, 동정맥루 및 혈전 등이 매우 드물게 생길 수 있으며, 혈관이 막히고 심근 경색이 발생하면 환자에게 치명적인 손상을 일으킨다. 교통사고로 인한 흉부의 둔상 후 발생한 심근경색증을 진단받은 33세 남자에서 관상동맥 우회로술을 통해 좋은 결과를 얻었기에 보고하는 바이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.