• Title/Summary/Keyword: Myocardial PET

Search Result 56, Processing Time 0.024 seconds

Quantitative Analysis of Dynamic PET images in Cardiac patients using Patlak tool on GE PET workstation

  • Son, Hye-Kyung;Mijin Yun;Kim, Dong-Hyeon;Haijo Jung;Lee, Jong-Doo;Yoo, Hyung-Sik;Kim, Hee-Joung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.314-317
    • /
    • 2002
  • The purpose of this study was to evaluate the clinical application of Patlak tool on GE PET workstation for quantitative analysis of dynamic PET images in cardiac patients. Three patients including coronary artery disease (CAD), myocardial infarction (MI), and angina were studied. All subjects underwent dynamic cardiac PET scan using a GE Advance scanner. After 10 min transmission scan for attenuation correction using two rotating $\^$68/Ge rod sources, three patients with cardiac disease were performed dynamic cardiac PET scan after the administration of approximately 370 MBq of FDG. The dynamic scan consisted of 36 frames with variable frame length (12${\times}$10s, 6${\times}$20s, 6${\times}$60s, 12${\times}$300s) for a total time of 70 min. Blood samples were obtained to determine the plasma substrate concentration. Region of interest of circular and rectangular shape to acquire input functions and tissue data were placed on left ventricle and myocardium. A value of 0.67 was used for lumped constant. Mean plasma substrate concentrations for three patients were 100 mg/dl (CAD), 100 mg/dl (MI), 132 mg/dl (angina), respectively. Regional MMRGlc values (mean${\pm}$SD) at lateral myocardium area for CAD, MI, and angina were 8.43${\pm}$0.24, 4.08${\pm}$0.16, and 6.15${\pm}$0.23 mg/min/100ml, respectively. Patlak tool on GE PET workstation appeared to be useful for quantitative analysis of dynamic PET images in cardiac patients, although further studies may be required for absolute quantitation.

  • PDF

A Refined Method for Quantification of Myocardial Blood Flow using N-13 Ammonia and Dynamic PET (N-13 암모니아와 양전자방출단층촬영 동적영상을 이용하여 심근혈류량을 정량화하는 새로운 방법 개발에 관한 연구)

  • Kim, Joon-Young;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Ju, Hee-Kyung;Kim, Yong-Jin;Kim, Byung-Tae;Choi, Yong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.73-82
    • /
    • 1997
  • Regional myocardial blood flow (rMBF) can be noninvasively quantified using N-13 ammonia and dynamic positron emission tomography (PET). The quantitative accuracy of the rMBF values, however, is affected by the distortion of myocardial PET images caused by finite PET image resolution and cardiac motion. Although different methods have been developed to correct the distortion typically classified as partial volume effect and spillover, the methods are too complex to employ in a routine clinical environment. We have developed a refined method incorporating a geometric model of the volume representation of a region-of-interest (ROI) into the two-compartment N-13 ammonia model. In the refined model, partial volume effect and spillover are conveniently corrected by an additional parameter in the mathematical model. To examine the accuracy of this approach, studies were performed in 9 coronary artery disease patients. Dynamic transaxial images (16 frames) were acquired with a GE $Advance^{TM}$ PET scanner simultaneous with intravenous injection of 20 mCi N-13 ammonia. rMBF was examined at rest and during pharmacologically (dipyridamole) induced coronary hyperemia. Three sectorial myocardium (septum, anterior wall and lateral wall) and blood pool time-activity curves were generated using dynamic images from manually drawn ROIs. The accuracy of rMBF values estimated by the refined method was examined by comparing to the values estimated using the conventional two-compartment model without partial volume effect correction rMBF values obtained by the refined method linearly correlated with rMBF values obtained by the conventional method (108 myocardial segments, correlation coefficient (r)=0.88). Additionally, underestimated rMBF values by the conventional method due to partial volume effect were corrected by theoretically predicted amount in the refined method (slope(m)=1.57). Spillover fraction estimated by the two methods agreed well (r=1.00, m=0.98). In conclusion, accurate rMBF values can be efficiently quantified by the refined method incorporating myocardium geometric information into the two-compartment model using N-13 ammonia and PET.

  • PDF

Regional Myocardial Blood Flow Estimation Model Using Rubidium-82 Dynamic Myocardial PET and Modified Double Integration Method (Rubidium-82 심근 Dynamic PET 영상과 변형이중적분법을 이용한 국소 심근 혈류 예측 모델)

  • Park, Yong-Woo;Lee, Jae-Sung;Lee, Tae-Hoon;Kwak, Cheol-Eun;Lee, Dong-Soo;Kang, Keon-Wook;Park, Jae-Hyung;Jeong, Jae-Min;Chung, June-Key;Lee, Myung-Chul;Seo, Joung-Don;Min, Byoung-Goo;Koh, Chang-Soon
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.157-158
    • /
    • 1995
  • PDF

Recent Advances in Nuclear Medicine Imaging Instrumentation (핵의학 영상기기의 최근 진보)

  • Jung, Jin-Ho;Choi, Yong;Hong, Key-Jo;Min, Byung-Jun;Hu, Wei;Kang, Ji-Hoon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.98-111
    • /
    • 2008
  • This review introduces advances in clinical and pre-clinical single photon emission computed tomography (SPECT) and positron emission tomography (PET) providing noninvasive functional images of biological processes. Development of new collimation techniques such as multi-pinhole and slit-slat collimators permits the improvement of system spatial resolution and sensitivity of SPECT. Application specific SPECT systems using smaller and compact solid-state detector have been customized for myocardial perfusion imaging with higher performance. Combined SPECT/CT providing improved diagnostic and functional capabilities has been introduced. Advances in PET and CT instrumentation have been incorporated in the PET/CT design that provide the metabolic information from PET superimposed on the anatomic information from CT. Improvements in the sensitivity of PET have achieved by the fully 3D acquisition with no septa and the extension of axial field-of-view. With the development of faster scintillation crystals and electronics, time-of-flight (TOF) PET is now commercially available allowing the increase in the signal-to-noise ratio by incorporation of TOF information into the PET reconstruction process. Hybrid PET/SPECT/CT systems has become commercially available for molecular imaging in small animal models. The pre-clinical systems have improved spatial resolution using depth-of-interaction measurement and new collimators. The recent works on solid state detector and dual modality nuclear medicine instrumentations incorporating MRI and optical imagers will also be discussed.

Synthesis and $^{18}F$ Labelling of Organic Ammonium Salts to New Cardiac Flow Tracer for PET and Their Biodistribution (양전자단층촬영에 이용 가능한 새로운 심근 혈류 추적자 개발; F-18이 표지된 유기암모늄염의 합성과 체내분포에 관한 연구)

  • Yu, Kook-Hyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.28 no.3
    • /
    • pp.331-337
    • /
    • 1994
  • In order to develop a $^{18}F$-labelled myocardial perfusion agent(flow tracer) for PET, $^{18}F$-labelled organic ammonium cations were synthesized and evaluated in relation to their biodistribution. Five quaternary organic ammonium compounds were labelled with $^{18}F$ in a side chain with moderate to good yields by direct introduction of $^{18}F$-fluoride. Radiochemical yields have been achieved in 30-40min by the precursors (tosylates) in dimethylsulfoxide 15-60% (decay corrected). The reaction was found to be autocatalyzed. A remote controlled procedure was developed in these synthesis. $^{18}F$-Labelling and HPLC-purification of com-pounds needed about 60 min(Yield; 7-20%). Up to now the two compounds N-4-[$^{18}F$]fluorobutyl-pyridinium cation(1) and N, N dibenzyl-4(2-[$^{18}F$]fluoroethyl)piperidinium cation(2) were investigated in relation to their biodistribution in mice. Compound 1 showed at 1 min post injection the high uptake of 19.22% ID/g organ in the myocardium but a following fast decline to 1.12% ID/g organ after 40min. Uptake of compound 2 was after 1min in the heart 5.90% ID/g organ but after 40min at the relative high value of 4.33% ID/g organ. Heart:blood ratio for compound(1) at 1 min was 8.3, at 40 min 2.6 for compound II 2.0(1min) and 15.0(40 min). As data of compound 2 showed greater heart uptake, slower myocardial release, and higher heart: blood ratios, compound 2 is a good candidate for further evaluation.

  • PDF

Evaluation of Endothelium-dependent Myocardial Perfusion Reserve in Healthy Smokers; Cold Pressor Test using $H_2^{15}O\;PET$ (흡연자에서 관상동맥 내피세포 의존성 심근 혈류 예비능: $H_2^{15}O\;PET$ 찬물자극 검사에 의한 평가)

  • Hwang, Kyung-Hoon;Lee, Dong-Soo;Lee, Byeong-Il;Lee, Jae-Sung;Lee, Ho-Young;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.21-29
    • /
    • 2004
  • Purpose: Much evidence suggests long-term cigarette smoking alters coronary vascular endothelial response. On this study, we applied nonnegative matrix factorization (NMF), an unsupervised learning algorithm, to CO-less $H_2^{15}O-PET$ to investigate coronary endothelial dysfunction caused by smoking noninvasively. Materials and methods: This study enrolled eighteen young male volunteers consisting of 9 smokers $(23.8{\pm}1.1\;yr;\;6.5{\pm}2.5$ pack-years) and 9 nonsmokers $(23.8{\pm}2.9 yr)$. They do not have any cardiovascular risk factor or disease history. Myocardial $H_2^{15}O-PET$ was performed at rest, during cold ($5^{\circ}C$) pressor stimulation and during adenosine infusion. Left ventricular blood pool and myocardium were segmented on dynamic PET data by NMF method. Myocardial blood flow (MBF) was calculated from input and tissue functions by a single compartmental model with correction of partial volume and spillover effects. Results: There were no significant difference in resting MBF between the two groups (Smokers: 1.43 0.41 ml/g/min and non-smokers: $1.37{\pm}0.41$ ml/g/min p=NS). during cold pressor stimulation, MBF in smokers was significantly lower than 4hat in non-smokers ($1.25{\pm}0.34$ ml/g/min vs $1.59{\pm}0.29$ ml/gmin; p=0.019). The difference in the ratio of cold pressor MBF to resting MBF between the two groups was also significant (p=0.024; $90{\pm}24%$ in smokers and $122{\pm}28%$ in non-smokers.). During adenosine infusion, however, hyperemic MBF did not differ significantly between smokers and non-smokers ($5.81{\pm}1.99$ ml/g/min vs $5.11{\pm}1.31$ ml/g/min ; p=NS). Conclusion: in smokers, MBF during cold pressor stimulation was significantly lower compared wi4h nonsmokers, reflecting smoking-Induced endothelial dysfunction. However, there was no significant difference in MBF during adenosine-induced hyperemia between the two groups.

Linearity Estimation of PET/CT Scanner in List Mode Acquisition (List Mode에서 PET/CT Scanner의 직선성 평가)

  • Choi, Hyun-Jun;Kim, Byung-Jin;Ito, Mikiko;Lee, Hong-Jae;Kim, Jin-Ui;Kim, Hyun-Joo;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.86-90
    • /
    • 2012
  • Purpose: Quantification of myocardial blood flow (MBF) using dynamic PET imaging has the potential to assess coronary artery disease. Rb-82 plays a key role in the clinical assessment of myocardial perfusion using PET. However, MBF could be overestimated due to the underestimation of left ventricular input function in the beginning of the acquisition when the scanner has non-linearity between count rate and activity concentration due to the scanner dead-time. Therefore, in this study, we evaluated the count rate linearity as a function of the activity concentration in PET data acquired in list mode. Materials & methods: A cylindrical phantom (diameter, 12 cm length, 10.5 cm) filled with 296 MBq F-18 solution and 800 mL of water was used to estimate the linearity of the Biograph 40 True Point PET/CT scanner. PET data was acquired with 10 min per frame of 1 bed duration in list mode for different activity concentration levels in 7 half-lives. The images were reconstructed by OSEM and FBP algorithms. Prompt, net true and random counts of PET data according to the activity concentration were measured. Total and background counts were measured by drawing ROI on the phantom images and linearity was measured using background correction. Results: The prompt count rates in list mode were linearly increased proportionally to the activity concentration. At a low activity concentration (<30 kBq/mL), the prompt net true and random count rates were increased with the activity concentration. At a high activity concentration (>30 kBq/mL), the increasing rate of the prompt net true rates was slightly decreased while the increasing rate of random counts was increased. There was no difference in the image intensity linearity between OSEM and FBP algorithms. Conclusion: The Biograph 40 True Point PET/CT scanner showed good linearity of count rate even at a high activity concentration (~370 kBq/mL).The result indicates that the scanner is useful for the quantitative analysis of data in heart dynamic studies using Rb-82, N-13, O-15 and F-18.

  • PDF

Assessment of Prognosis and Risk Stratification in Coronary Artery Disease (관상동맥질환의 예후 및 위험도 평가)

  • Lim, Seok-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.222-228
    • /
    • 2009
  • Risk stratification and assessment of prognosis in patients with known or suspected CAD is of crucial important for the practice of contemporary medicine. Noninvasive testing such as myocardial perfusion scintigraphy, coronary artery calcium scoring or CT coronary angiography is increasingly being used to determine the need for aggressive medical therapy and to select patients for catheterization. The integrated anatomic and functional information may provide more additional information for the cardiologist or other clinician by the improved risk stratification and diagnostic accuracy of integrated techniques. The development of SPECT/CT or PET/CT hybrid systems is therefore of important value for the nuclear cardiology.

Scintigraphic Assessment of Myocardial Viability (신티그라피에 의한 심근생존능 평가)

  • Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.2
    • /
    • pp.155-160
    • /
    • 1993
  • The identification of viable myocardium in patients with coronary artery disease and left ventricular dysfunction is an issue of increasing clinical relavance in the current era of myocardial revascularization. There are at least two forms of reversible myocardial dysfunction. Early reperfusion does not always lead to immediate functional improvement; rather, the return of contractility in tissue salvaged by reperfusion is delayed for hours, days or even weeks, a phenomenon that has been termed "stunned myocardium". Some patients with coronary artery disease show myocardial dysfunction at rest which are associated with reduced perfusion, and which disappear after revascularization; this phenomenon has been termed "hibernating myocardium". Recently, cardiac imaging techniques that evaluate myocardial viability on the basis of perfusion-contraction mismatch and inotropic reserve have gained substantial popularity and clinical success. This review focus on the application of $^{201}TI$ and $^{99m}Tc-MIBI$ to address myocardial viability in patients with hibernating and stunned myocardium. It is clear that 4-hour redistribution images of $^{201}TI$ underestimate ischemia and overestimate scar. Delayed imaging and reinjection imaging have been developed for the assessment of viability. Among many protocols suggested, stress-redistribution-reinjection imaging gained most popularity. Although $^{99m}Tc-MIBI$ could identify myocardial viability, $^{201}TI$ reinjection technique was regarded as superior to it. In conclusion, $^{201}TI$ stress, 4-hr rest redistribution, and reinjection imaging technique may be the most preferable method for evaluation of myocardial viability.

  • PDF