• Title/Summary/Keyword: Mylar

Search Result 46, Processing Time 0.022 seconds

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Effect of working time on the film thickness of dental resin cements (레진 시멘트의 혼합 후 시간에 따른 피막도의 변화)

  • Yi, Yu-Seung;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yeo, In-Sung;Ha, Seung-Ryong;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.325-329
    • /
    • 2015
  • Purpose: The aim of this study was to compare the film thicknesses of several resin cements as a function of time after mixing and to examine the effect of working time on the film thicknesses. Materials and methods: The film thickness (${\mu}m$) of 4 resin cements (n=10), 1 composite resin (Panavia F 2.0), 3 self-adhesive resin (Clearfil SA luting, Zirconite, RelyX U200) cements was measured at 20-second intervals after mixing of the cements up to 200 seconds under a load of 50 N. Linear regression was fitted to verify the effect of working time on the film thickness of each cement. Data were compared to the working time recommended by manufacturers using Wilcoxon test ($\alpha$=.05). Results: All of the materials showed a positive linear correlation between the film thickness and working time. There was no statistically significant difference between the working time based on our results and the values recommended by the manufacturers even though there was a discrepancy between those two values. Conclusion: The film thickness of resin cements could increase with the increase of working time. Working time to meet the ISO standard of $50-{\mu}m$ maximum film thickness could be different from the manufacturer's recommended value.

THE EFFECT OF OXYGEN INHIBITION ON INTERFACIAL BONDING BETWEEN COMPOSITE RESIN LAYERS (복합레진 적층계면에서 oxygen inhibition의 영향에 관한 연구)

  • Choi, Su-Mi;Park, Jae-Hong;Choi, Sung-Chul;Kim, Kwang-Chul;Choi, Young-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.3
    • /
    • pp.298-307
    • /
    • 2010
  • The purpose of this study was to assess the effect on oxygen inhibition layer(OIL) for the interfacial bonding between resin composite layers, including shear bond strength, fracture modes and degree of conversion. The first layer of specimen was filled with Z-250(shade A3) and was cured for 40s. The second layer of specimen was filled with same composite(shade A1) and was cured for 40s. The first layer of specimens for each group were prepared by methods as followings. Control(curing in atmospheric air), Group1(curing against Mylar strip), Group2(scrubbed with a acetone-soaked cotton), Group3(using Tescera light cup), Group4(using Tescera heat cup), Group5(stored in disti1led water for 30days at $37^{\circ}C$), Group6 (using bonding agent). The results were as follows: 1. There was no statistically significant different shear bond strength between control and group 1(p>0.05). 2. Group 2 showed significantly lower shear bond strength than control and group 1(p<0.05). 3. The observation of the fracture surface leads to the evidence that a major difference occurs in the case of control, group1 and group 3 samples which break mainly cohesively while the other groups break in majority adhesively. 4. The results of FTIR showed that the degree of conversion was the highest in group 2 and the lowest in control group(p<0.05). It can be concluded that an OIL is not necessary for bonding with composite resin. But if a reduced critical amount of the unreacted monomer is present, it was detrimental to bonding additional layers of composite. Further study, such as the quantitative analysis of the unreacted monomer are required.

INFLUENCE OF THE SURFACE ROUGHNESS ON TRANSLUCENCY AND SURFACE COLOR OF THE DENTAL COMPOSITE RESINS (복합레진의 표면 거칠기에 따른 투명도와 표면 색상의 차이에 관한 연구)

  • Cho Kyu-Jeong;Park Su-Jung;Cho Hyun-Gu;Kim Dong-Jun;Hwang Yun-Chan;Oh Won-Mann;Hwang In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.4
    • /
    • pp.312-322
    • /
    • 2006
  • The objectives of this study were to evaluate the effect of surface roughness on the surface color and translucency of the composite resins. Two composite resins (Esthet-X, Dentsply, Milford, USA and Charisma, Kulzer, Domagen, Germany) were used to investigate the surface color. Charisma was used to investigate the translucency. 40 disc samples (diameter: 8 mm, thickness: 5 mm) were made by each product to measure the surface color. Polymerized each sample's one side was treated by Sof-Lex finishing and polishing system (Group C, M, F, SF). 40 disc samples (diameter: 6 mm, thickness: 1 mm) were prepared to measure the opacity. 1 mm samples were ground one side with #600, #1000, #1500 and #2000 sandpapers. CIE $L^{*}a^{*}b^{*}$ values of each 5 mm thickness samples, and XYZ values of 1 mm thickness samples on the white and black background were measured with spectrophotometer (Spectrolino, GretagMacbeth, Regensdorf, Switzerland). Mean surface roughness (Ra) of all samples before and after surface treatment was measured using the Surface Roughness Tester SJ-301 (Mytutoyo, Tokyo, Japan). Regardless of type and shade of the composite resin, $L^{*}$ values measured in group C were higher than others (p < 0.05), and $L^{*}$ value decreased as the Ra value decreased except B3 shade of Esthet-X. But there were no significant difference in $a^{*}$ values among groups. In control group and SF, highest $b^{*}$ values were measured (p < 0.05), except B1 shade of Esthet-X. Contrast ratio decreased as the Ra value decreased (p < 0.05). With the above results, difference of surface roughness has influence on surface color and translucency of dental composite resins.

Influence of resin-nanoceramic CAD/CAM block shade and thickness on the microhardness of dual-cured resin cement (레진-나노세라믹 CAD/CAM블록의 색조와 두께가 이원중합 레진시멘트의 미세경도에 미치는 영향)

  • Choi, Ga-Young;Park, Jeong-Kil;Jin, Myoung-Uk;Kwon, Yong Hoon;Son, Sung-Ae
    • Korean Journal of Dental Materials
    • /
    • v.44 no.2
    • /
    • pp.151-161
    • /
    • 2017
  • The purpose of this study was to examine the effect of shade and thickness of resin-nanoceramic CAD-CAM block (RNB) on the microhardness of dual-cured resin cement, as well as to measure the number of photons transmitted through RNBs of different thicknesses and colors. One dual-cured resin cement was used to prepare resin cement specimens. Resin cement specimens were light-cured for 40 seconds through 3 shades (A1, A2, A3 in HT (high translucency) and LT (low translucency) respectively) and four thicknesses (1, 2, 3, 4 mm) of RNB specimens. Vickers microhardness measurements of resin cement specimens were performed using a Vickers hardness tester. The light transmission of RNB specimens was measured using a spectrometer (SpectroPro-500, Acton Research, Acton, MA, U.S.A.), and the translucency parameter was calculated using the CIEL*a*b* system. Data were statistically analyzed by ANOVA and Tukey's test. There was a significant decrease of microhardness of resin cement specimen with an overlay of 4 mm of RNB thickness and A3 shade in comparison to A1 and 1 mm, respectively (p<0.05). The translucency parameter values and light transmission of RNBs tested differed significantly, according to the thicknesses of the specimen (p<0.05). Light transmission is decreased with increase in the thicknesses of RNBs. Shade A1 transmitted more light than darker blocks. A decrease in microhardness of resin cement specimens was observed with increasing thickness and shade (A1 to A3) of RNBs.

Research and Consideration of Eco-friendly Radiation Shielding using CT Contrast Agent (CT 조영제를 이용한 친환경적인 방사선 차폐에 관한 연구 및 고찰)

  • Sung-Gil Kim;Yeon-Sang Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.827-833
    • /
    • 2023
  • CT(Computed Tomography) contrast agents are commonly used in general hospitals and university hospitals when taking radiographic examinations. The CT contrast medium contains a mixture of a substance called "Iodine", which absorbs radiation energy and makes it appear white in the CT image, further improving the image quality. In addition, the CT contrast agent, which moves like blood in the blood vessels, clearly differentiates it from muscle and water, so CT contrast agents are widely used in hospitals. These CT contrast agents absorb X-rays, but in order to absorb X-rays, they must have a high density or a high radiation absorption coefficient. Since the CT contrast agent is injected into the blood vessels, if the density is high, the blood vessels are strained and the patient is in shock. For this reason, it is necessary to match the density similar to that of water and always pay attention to side effects. In addition, the amount of CT contrast medium is adjusted according to the patient's body shape, and the remaining contrast medium is discarded. However, This study tried to find out the idea of recycling it as a radiation shielding material. Since the CT contrast medium has a high radiation absorption coefficient at a density similar to that of water, the amount to absorb radiation is adjusted, the amount of contrast medium and the amount of water are adjusted, and the amount of radiation absorbed is determined by mixing with water. In addition, a study was conducted to find out the result of the difference in radiation absorption in various ways by comparing the radiation quality coefficient and absorption coefficient with other substances or materials in an environmentally friendly method harmless to the human body by mixing CT contrast medium and water.