• Title/Summary/Keyword: Mycorrhization

Search Result 6, Processing Time 0.022 seconds

In Vitro Mycorrhization and Morphological Characterization of Xanthoconium affine with Pinus densiflora

  • Wang, Eun-Jin;Jang, Yeongseon;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.45 no.4
    • /
    • pp.319-327
    • /
    • 2017
  • In this study, we investigated the culture conditions of four ectomycorrhizal fungi, namely, Amanita spissacea NIFoS 2719, Pisolithus arhizus NIFoS 2784, Suillus spraguei NIFoS 2848, and Xanthoconium affine NIFoS 2716, in solid and liquid culture media. In addition, we attempted to induce in vitro mycorrhization of the fungi with Pinus densiflora. Prior to liquid culture, we determined the optimal culture conditions for each species in solid media. The results revealed that all species examined are capable of growth in potato dextrose agar (PDA), malt extract agar (MEA), and modified Melin-Norkran's medium (MMN), although their preferred growth media were different. Liquid culture experiments showed that inorganic nitrogen did not enhance the mycelial growth of all four species. Therefore, we used MMN-based liquid inocula to promote the growth of ectomycorrhizal fungi in our symbiosis culture system. Mycorrhization was observed in Xanthoconium affine NIFoS 2716. Morphological analysis revealed that fungi-inoculated roots of P. densiflora form simple and dichotomous lateral roots with dense mycelia. In addition, inoculation with X. affine NIFoS 2716 promoted root and shoot developments.

Korean Tricholoma matsutake Strains that Promote Mycorrhization and Growth of Pinus densiflora Seedlings (균근 형성과 소나무 유묘 생장이 우수한 송이 균주의 선발)

  • Jeon, Sung-Min;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.44 no.3
    • /
    • pp.155-165
    • /
    • 2016
  • Domestic and international production of Tricholoma matsutake has decreased owing to matsutake forests being left alone, host plant disease, forest fires, climate change, and so on. In order to identify strains that are suitable for the production of T. matsutake-inoculated seedlings, Pinus densiflora seedlings were inoculated with T. matsutake after in vitro rooting and mycorrhization was examined in the roots of T. matsutake-inoculated seedlings after 6 months. The mycorrhization rate was greater than 80% for 5 strains (NIFoS 421, 434, 1681, 1984, and 2001) out of 19 total strains. Seven strains (NIFoS 434, 441, 561, 562, 1016, 1807, and 1812) showed shoot/root ratios of less than 3.0 and had a seedling shoot biomass of 2.0 to 4.8 times higher than that of the root. Eight strains (NIFoS 441, 561, 562, 1016, 1807, 1812, 1984, and 2001) stimulated increases in shoot volume and three stains (NIFoS 441, 562, and 1812) promoted the growth of root biomass by mycorrhizal formation. In conclusion, 4 strains (NIFoS 434, 561, 1984, and 2001) out of 19 total strains tested showed higher mycorrhization rates and seedling growth than those of the other strains. We expect that the use of these four strains may contribute to T. matsutake-inoculated seedling production.

Mycorrhization of Quercus spp. with Tuber huidongense and T. himalayense Collected in Korea

  • Gwon, Ju-Hui;Park, Hyeok;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.50 no.2
    • /
    • pp.104-109
    • /
    • 2022
  • Fungi of the genus Tuber are ectomycorrhizal fungi that form a symbiotic relationship mainly with oak and hazel trees. Tuber spp. exhibit a highly selective host plant preference; thus, for cultivation purposes it is important to select an appropriate host plant for successful mycorrhization. In addition, as mycorrhizal characteristics differ according to Tuber spp., it is necessary to understand the differences in mycorrhizae according to the fungal species. Tuber huidongense and Tuber himalayense were recently discovered in Korea; therefore, we used spore suspensions from these two species to inoculate two species of oak trees, Quercus acutissima and Quercus dentata, to compare colonization rates and morphologies of the mycorrhizae. The colonization rates demonstrated that the different Tuber spp. favored different host plant species. In addition, unique morphological and anatomical characteristics were observed for T. huidongense and T. himalayense depending on the host species. These findings can lead to new economically important agricultural activities related to truffle cultivation in Korea.

Mycorrhization of Quercus acutissima with Tuber borchii and Tuber melanosporum

  • Jung-Min Lee;Ahn-Heum Eom
    • The Korean Journal of Mycology
    • /
    • v.50 no.4
    • /
    • pp.275-280
    • /
    • 2022
  • Truffles are ectomycorrhizal fungi that belong to the genus Tuber. They exhibit symbiotic relationships, particularly with oak (Quercus spp.) and hazel (Corylus spp.) trees. We performed an inoculation using a spore suspension to synthesize mycorrhizae between European truffles, Tuber borchii and Tuber melanosporum, and an indigenous oak species, Quercus acutissima. This resulted in the formation of mycorrhizae within 2 months after inoculation. Despite having the same host plant, differences in features were observed between Tuber species, including color and mantle type. These results indicate that Q. acutissima is a suitable host plant for truffle cultivation in Korea and provide a better understanding of the mycorrhization of T. borchii and T. melanosporum.

Application of Arbuscular Mycorrhizal Fungi during the Acclimatization of Alpinia purpurata to Induce Tolerance to Meloidogyne arenaria

  • da Silva Campos, Maryluce Albuquerque;da Silva, Fabio Sergio Barbosa;Yano-Melo, Adriana Mayumi;de Melo, Natoniel Franklin;Maia, Leonor Costa
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.329-336
    • /
    • 2017
  • An experiment was conducted to evaluate the tolerance of micropropagated and mycorrhized alpinia plants to the parasite Meloidogyne arenaria. The experimental design was completely randomized with a factorial arrangement of four inoculation treatments with arbuscular mycorrhizal fungi (AMF) (Gigaspora albida, Claroideoglomus etunicatum, Acaulospora longula, and a non-inoculated control) in the presence or absence of M. arenaria with five replicates. The following characteristics were evaluated after 270 days of mycorrhization and 170 days of M. arenaria inoculation: height, number of leaves and tillers, fresh mass of aerial and subterranean parts, dry mass of aerial parts, foliar area, nutritional content, mycorrhizal colonization, AMF sporulation, and the number of galls, egg masses, and eggs. The results indicated a significant interaction between the treatments for AMF spore density, total mycorrhizal colonization, and nutrient content (Zn, Na, and N), while the remaining parameters were influenced by either AMF or nematodes. Plants inoculated with A. longula or C. etunicatum exhibited greater growth than the control. Lower N content was observed in plants inoculated with AMF, while Zn and Na were found in larger quantities in plants inoculated with C. etunicatum. Fewer galls were observed on mycorrhized plants, and egg mass production and the number of eggs were lower in plants inoculated with G. albida. Plants inoculated with A. longula showed a higher percentage of total mycorrhizal colonization in the presence of the nematode. Therefore, the association of micropropagated alpinia plants and A. longula enhanced tolerance to parasitism by M. arenaria.

Overcoming Kalmia-Induced Growth Inhibition of Picea mariana by Mycorrhizal Inoculation (Picea mariana 생장(生長)을 억제(抑制)하는 Kalmia angustifolia 에 대한 외생균근(外生菌根)의 영향(影響))

  • Mallik, A.U.;Zhu, H.;Park, Young-Goo
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.3
    • /
    • pp.429-444
    • /
    • 1998
  • Objective of this study was to select ectomycorrhizal fungi for black spruce(Picea mariana) inoculation to overcome the growth inhibitory effects of Kalmia angustifolia. Nineteen isolates representing 11 species of ectomycorrhizal fungi were tested for their abilities to grow and form mycorrhizae with black spruce seedlings in the presence of water leachate of leaves of Kalmia. Mycelium growth of 9 isolates were inhibited by the leaf leachate. Colony diameter and biomass of the other 10 isolates were either increased or unaffected under the same conditions. Acidic pH of the culture medium(pH 3 and 4) inhibited some of the fungi, but a combination of acidic pH and the leaf leachate was more inhibitory. Thirteen isolates were able to form ectomycorrhizae with black spruce in presence of 25% leaf leachate in pure culture. Four isolates, Paxillus involutus(NF4), Cenococcum geophilum(GB12), Laccaria laccata(GB23), and E-strain(GB45) formed mycorrhizae more successfully than the others in presence of up to 50% Kalmia leaf leachate. Black spruce seedlings pre-inoculated with these fungi were grown with Kalmia leaf leachate and live Kalmia plants during a four month greenhouse experiment. Abundant mycorrhizae(77-91% of root tips) were developed on seedlings pre-inoculated with P. involutus, L. laccata and E-strain but relatively poor mycorrhization(32% of root tips) resulted with C. geophidum. Over 90% of the short root mycorrhizae were attributed to the inoculated fungi although indigenous mycorrhizae also occurred on most seedlings. Persistence of the mycorrhizae was not affected by living Kalmia plants. Over 80% of the mycorrhizae on seedlings inoculated with P. involutus, L. laccata and E-strain and 53% of the mycorrhizae on seedlings inoculated with C. geophilum were attributable to the inoculant fungi. Control seedlings formed about 45% ectomycorrhizal short roots with indigenous fungi. The L. laccata and C. geophilum inoculated seedlings exhibited enhanced mycorrhizae formation in presence of Kalmia leaf leachate. Mycorrhizae formation with inoculant fungi was 4-15% lower at pH 4 than at pH 5, with the greatest inhibition occurring for L. laccata. Seedlings inoculated with P. involutus had the greatest shoot and root growth followed by L. laccata and E-strain inoculated seedlings. The P. involutus and L. laccata inoculated seedlings were significantly taller with more shoot dry biomass than the uninoculated(control) seedlings. E-strain inoculated seedlings had significantly higher shoot dry biomass and significantly lower number of first order lateral roots compared to the control but other growth parameters such as height, root dry weight and number of short root tips were not significantly different from the control. Seedlings inoculated with C. geophilum were not significantly different from the uninoculated seedlings in any of the growth parameters except for the number of first artier lateral roots which was significantly less than the control seedlings.

  • PDF