• Title/Summary/Keyword: Mycorrhizal plants

Search Result 119, Processing Time 0.028 seconds

A study on pearl millet (Pennisetum glaucum L.) plant Biochemical and histochemical changes inoculated with indigenous AM fungi under Barren soil

  • Pal, Ajay;Pandey, Sonali
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.203-206
    • /
    • 2017
  • The soil organisms that develop beneficial Symbiotic relationships with plants roots and contribute to plant growth are mycorrhizal (AM) fungi. Arbuscular mycorrhizal inoculations change the growth and biochemical composition of the host plant and soil. Mycorrhizal root systems do augment the absorbing area of roots from 10 to 100 times thereby greatly improving the ability of the plants to utilize the soil resources. A pot experiment was conducted during the kharif seasons at Jaipur, Rajasthan, to find out the effects of three different indigenous AM fungi i.e. Glomus mosseae, Glomus fasciculatum and Gigaspora decipiens either single and in combination inoculation on biochemical and histochemical changes of Pearl millet (Pennisetum glaucum L.) grown under barren soil conditions. The AM fungus has shown to improve the tolerance of plant to drought stress. Experimental results showed that AM fungi treated plants improved their plants growths, biochemical and histochemical changes as compared to non-mycorrhizal treatments. The AM fungi inoculated plant was found to be attaining maximum plant biochemical and histochemical substances in Glomus mosseae (alone) and also Glomus mosseae + Glomus fasciculatum treatments.

Isolations of the Orchid mycorrhizal Fungi from the Roots of the Korean native Orchids and Inoculations of the Isolates to Four different Orchids (한국 자생란에 난 균근균의 분리와 유묘난에 접종)

  • 이상선;오창호;백기엽;이태수
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.536-542
    • /
    • 1998
  • Ten isolates of the orchid mycorrhizal fungi were isolated from the roots of Korean native orchid plants (Cymbidium goeringii) which inhabitate mainly in southern and western areas of Korea. The growth rates and color of the isolates in potato dextrose agar (PDA) were various. Microscopic observations of the hyphae isolated were identified as Rhizoctonia repens and R. endophytica var endophytica or their related species. R. repens was isolated from the roots of the Korean native orchids, but R. endophytica var endophyica was only isolated from the roots of the commercial orchids introduced from foreign countries. Also, the polymorephic patterns of genomic DNA extracted from selected isolates were compared with those of DNA extracted from the orchid mycorrhizal fungi isolated previously and similar band patterns were observed among those isolates. Five isolates of R. repens were selected and cultured at the oatmeal agar for investigating their symbiosis with orchid plants. The symbiotic specificity between orchid plants and isolated orchid mycorrhizal fungi was observe by growing orchids about six months in the greenhouse. The symbiotic responses of the commercial orchid plants with selected isolates were quite different form different isolates due to the genetic variations.

  • PDF

Ecological Study on Arbuscular Mycorrhizal Fungi in the Soils around Leguminous Plants in Korea (콩과식물 주변 토양의 내생균근균에 관한 생태학적 연구)

  • Ahn, Tae-Kun;Lee, Min-Woog;Lee, Sang-Sun
    • The Korean Journal of Mycology
    • /
    • v.20 no.3
    • /
    • pp.204-215
    • /
    • 1992
  • From 12 August to 21 November in 1991, 65 soil specimens were collected from nineteen leguminous plant roots throughout nine locations of four provinces. They were sieved to collect and identify the arbuscular mycorrhizal spores (four genera, 21 species). The species of Glomus were most commonly (47.6% of all observations) found, but the species of Gigaspora (about 4.8% of all observations) occurred infrequently or rarely rather than the species of the other genera. The most common arbuscular mycorrhizal species at nine locations were Acaulospora laevis and Glomus laminated spores cf. macrocarpus var. macrocarpus. All of nineteen legume plant species collected were found to be associated with the arbuscular mycorrhizal fungi . Cassia mimosoides var. nomame and Kummerowia striata in legume plants had the great frequency of arbuscular mycorrhizal fungi associated with their roots. The number of isolated spores were ranged from 0.3 to 10.0 spores per 10g of soil. The species diversity of arbuscular mycorrhizal spores at the disturbed areas were calculated to be bigger than those in the natural vegetation areas.

  • PDF

Effects of Long-Term Subcultured Arbuscular Mycorrhizal Fungi on Red Pepper Plant Growth and Soil Glomalin Content

  • Selvakumar, Gopal;Yi, Pyoung Ho;Lee, Seong Eun;Shagol, Charlotte C.;Han, Seung Gab;Sa, Tongmin;Chung, Bong Nam
    • Mycobiology
    • /
    • v.46 no.2
    • /
    • pp.122-128
    • /
    • 2018
  • Arbuscular mycorrhizal fungi (AMF) are well-known for their ability to improve plant growth and help plants withstand abiotic stress conditions. Unlike other fungi and bacteria, AMF cannot be stored, as they are obligate biotrophs. Long-term preservation of AMF spores is challenging and may lead to the loss of viability and efficiency. This study aimed to understand the effect of prolonged subculture of AMF species on the growth and glomalin-related soil protein (GRSP) from red pepper (Capsicum annuum L.). AMF spores were mass-produced using different techniques and subcultured in pots with sorghum sudangrass as the host plant for 3 years. Experimental soil samples were collected from natural grassland. Five different AMF inocula were used in triplicate as treatments. After 70 days of growth, red pepper plants were harvested and plant dry weight, plant nutrient content, mycorrhizal colonization, AMF spore count, and soil glomalin content were determined. AMF-treated plants displayed higher dry weight than controls, with only fruit dry weight being significantly different. Similarly, significant differences in phosphorous and potassium contents of the above-ground plant parts were observed between mycorrhizal and control treatments. In addition, soil GRSP content was significantly higher in plants inoculated with Rhizophagus sp. and Gigaspora margarita. The increased plant growth and GRSP content suggest that AMF can be maintained for 3 years without losing their efficiency if subcultured regularly with different symbiotic host plants.

Growth Response and Arsenic Uptake of White Clover (Trifolium repens) and Evening Primrose(Oenothera odorata) Colonized with Arbuscular Mycorrhizal Fungi in Arsenic-Contaminated Soil

  • Kim, Dae-Yeon;Lee, Yun-Jeong;Lee, Jong-Keun;Koo, Na-Min;Kim, Jeong-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.50-59
    • /
    • 2008
  • A greenhouse experiment was conducted to investigate the role of the arbuscular mycorrhizal(AM) fungus, Glomus mosseae(BEG 107) in enhancing growth and arsenic(As) and phosphorus(P) uptake of white clover(Trifolium repens) and evening primrose(Oenothera odorata) in soil collected from a gold mine having concentrations of 381.6 mg total As $kg^{-1}$ and 20.5 mg available As $kg^{-1}$. Trifolium repens and O. odorata are widely distributed on abandoned metalliferous mines in Korea. The percent root colonization by the AM fungus was 55.9% and 62.3% in T. repens and O. odorata, respectively, whereas no root colonization was detected in control plants grown in a sterile medium. The shoot dry weight of T. repens and O. odorata was increased by 323 and 117% in the AM plants compared to non-mycorrhizal(NAM) plants, respectively. The root dry weight increased up to 24% in T. repens and 70% in O. odorata following AM colonization compared to control plants. Mycorrhizal colonization increased the accumulation of As in the root tissues of T. repens and O. odorata by 99.7 and 91.7% compared to the NAM plants, respectively. The total uptake of P following AM colonization increased by 50% in T. repens and 70% in O. odorata, whereas the P concentration was higher in NAM plants than in the AM plants. Colonization with AM fungi increased the As resistance of the host plants to As toxicity by augmenting the yield of dry matter and increasing the total P uptake. Hence, the application of an AM fungus can effectively improve the phytoremediation capability of T. repens and O. odorata in As-contaminated soil.

Acaulosproa koreana, a New Species of Arbuscular Mycorrhizal Fungi (Glomeromycota) Associated with Roots of Woody Plants in Korea

  • Lee, Eun-Hwa;Park, Sang-Hee;Eo, Ju-Kyeong;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.341-348
    • /
    • 2018
  • A new species of arbuscular mycorrhizal fungi (Glomeromycota), Acaulospora koreana, was isolated from forest soils in South Korea. This novel fungus was collected from the rhizosphere of Lindera obtusiloba and Styrax obassia in forest and propagated with Sorghum bicolor in pot. Morphological characteristics of spores of A. koreana are rarely distinguished from Acaulospora mellea, which is reported as one of the most abundant mycorrhizal species in Korea. However, molecular evidence of rDNA sequence using improved primers for glomeromycotan fungal identification strongly supported that A. koreana is different from A. mellea but also any other species belonging to the genus Acaulospora. This is the first novel glomeromycatan fungus introduced in South Korea, but it suggests that there is a high possibility for discovering new arbuscular mycorrhizal fungi considering the abundance of plant species and advanced phylogenetic analysis technique.

Effects of Endomycorrhizal Glomus Inoculation on Drought Resistance and Physiological Changes of Lespedeza cyrtobotrya Seedlings Exposed to Water Stress (Glomus 내생균근균(內生菌根菌) 접종(接種)이 수분(水分) 스트레스에 노출(露出)된 참싸리의 건조저항성(乾燥抵抗性) 및 생리적(生理的) 변화(變化)에 미치는 영향(影響))

  • Kim, Hyo-Jin;Lee, Kyung-Joon;Han, Sim-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.2
    • /
    • pp.53-62
    • /
    • 2002
  • The objectives of this study were to understand the tolerance mechanism of woody plants to water stress and tolerance changes in relation to mycorrhizal formation. Lespedeza cyrtobotrya Miq. commonly used for erosion control in slopes were raised from seeds and transplanted to 120 plastic pots. Sixty pots received the top soil of a Fraxinus americana forest, while remaining 60 pots received the autoclaved top soil. The forest soil contained 1,200 spores per 100g of arbuscular endomycorrhizal fungus, mostly Glomus sp. The plants were raised outside with regular supply of water and mineral nutrients. Two kinds of water deficit treatment and a control were started at the middle of July : cyclic water deficit treatment with 3 cycles of sequential water stress at the point of xylem water potential of about -0.6, -0.6, and -1.7 MPa and recovery, and non-cyclic water deficit treatment with single water stress at about -1.5 MPa. The non-stressed plants received plenty of water throughout the period. In late August the plants were harvested for measurements of dry weight, N, P, carbohydrate contents, net photosynthesis and superoxide dismutase(SOD) activities. Both cyclic and non-cyclic water deficit treatments reduced dry weight by 60% and 40%, respectively, and reduced nitrogen absorption, while increased SOD activities. Water-stressed plants also showed increased carbohydrate contents in the leaves and lowered stomatal conductance. Mycorrhizal inoculation resulted in an average of 40% infection of roots and 2-3 times increase in P absorption in water-stressed as well as non-stressed plants. Mycorrhizal formation also increased shoot-root ratio. The results that SOD activities of water-stressed plants with mycorrhizal infection were significantly lower than those of non-mycorrhizal plants suggest the possibility of improvement of water-stressed condition by mycorrhizal formation. It was concluded that endomycorrhizal formation increased tolerance of Lespedeza cyrtobotrya seedlings to water stress.

Effects of Arbuscular Mycorrhizal Fungus, Glomus intraradices, on the Growth, Photosynthesis and Phosphorus Content of Robinia pseudoacacia Seedlings Treated with Simulated Acid Rain (Glomus 내생균근균 접종이 인공산성우를 처리한 아까시나무 묘목의 생장, 광합성, 인 함량에 미치는 영향)

  • Kim, Eun Ho;Lee, Kyung Joon;Lee, Kyu Hwa
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.735-742
    • /
    • 2006
  • The objective of this study was to elucidate the tolerance of woody plants to simulated acid rain in relation to mycorrhizal inoculation. Germinating seedlings of Robinia pseudoacacia were planted in 1I pots with autoclaved soil mixture of vermiculite, sand and nursery soil at 1:1:1 ratio. Each pot was inoculated with both crushed root nodules from a wild tree of the same species and commercial arbuscular mycorrhizal inoculum of Glomus intraradices at the time of planting the seedlings. Simulated acid rains at pH 2.6, 3.6, 4.6, and 5.6 were made by mixing sulfuric acid and nitric acid at 3: 1 ratio. Each pot received nutrient solution without N and P, and was also supplied with 180 ml of the one pH level of the acid rains once a week for 50 days. The plants were grown in the green house. At the end of experimental period, plants were harvested to determine contents of chlorophyll, mineral nutrients and net photosynthesis in the tissues, dry weight of the plants, and mycorrhizal infection in the roots. Mycorrhizal infection rate was significantly reduced only at pH 2.6, which meant vitality of G intraradices was inhibited at extremely low pH. Height growth, dry weight production, nodule production and chlorophyll content were increased by mycorrhizal infection in all the pH levels except pH 3.6. Particularly, mycorrhizal inoculation increased root nodule production by 85% in pH 5.6 and 45% in 4.6 treatments. But the stimulatory effect of mycorrhizal inoculation on nodule production was reduced at pH 3.6 and 2.6. Net photosynthesis was increased by mycorrhizal infection in all the pH levels. The phosphorus(P) content in the tissues was increased by 43% in average by mycorrhizal inoculation, which was statistically significant except in pH 2.6. It was concluded that mycorrhizal inoculation of Robinia pseudoacacia would enhance growth and resistance of the plants to acid rain by improving the photosynthesis, phosphorus nutrition, and more nodule production.

Effects of Arbuscular Mycorrhizal Fungi and Soil Conditions on Crop Plant Growth

  • Kim, Sang Joon;Eo, Ju-Kyeong;Lee, Eun-Hwa;Park, Hyeok;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.45 no.1
    • /
    • pp.20-24
    • /
    • 2017
  • We investigated the effects on various crops of inoculation with species of arbuscular mycorrhizal fungi (AMF) in soils from different sources and selected AMF species suitable for domestic environment-friendly farming. Effects on plants varied with the AMF species used. In carrot, Scutellospora heterogama, Acaulospora longula, and Funneliformis mosseae had a positive effect on growth of the host, whereas AMF had only weak effects on the growth of red pepper and leek. AMF inoculation had positive effects on the growth of carrot and sorghum. The results of this study indicate the nature of the relationship between soil, plants, and AMF; this study therefore has important implications for the future use of AMF in environment-friendly agriculture.

Effect of Mycorrhizal Treatment on Growth of Acacia spp. On Sandy BRIS Soils in Peninsular Malaysia

  • Lee, Su See;Mansor, Patahayah;Koter, Rosdi;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.5
    • /
    • pp.516-523
    • /
    • 2006
  • Marginal soils such as BRlS (Beach Ridges Interspersed with Swales) soils and ex-tin mining land make up approximately 0.5 million ha or about 2% of Malaysia's land area. In the coastal areas of the east coast of Peninsular Malaysia impoverished sandy BRIS dominates the landscape with most lying idle as there is no national management plan for their utilization. A field study was carried out to see whether mycorrhizal application had any effect on the growth of three exotic Acacia spp., i.e. Acacia auriculiformis, A. mangium and Acacia hybrid (A. auriculiformis ${\times}$ A. mangium) on BRIS soils. Two types of mycorrhizal inoculum, namely, a commercially available arbuscular mycorrhizal inoculum marketed as $MycoGold^{TM}$ and an indigenous ectomycorrhizal Tomentella sp. inoculum were tested. In the initial six months, height growth of all three tree species inoculated with the arbuscular mycorrhizal inoculum was significantly improved compared to the ectomycorrhizal inoculated and uninoculated control plants. The mycorrhizal effect was not evident thereafter and repeated application of the arbuscular mycorrhizal inoculum may be necessary for continued growth enhancement. Of the three species, A. mangium had the highest relative height growth rate over the 24 months on BRlS soils.